LEADER 03681nam 22006495 450 001 9910254094303321 005 20200705031754.0 010 $a3-0348-0921-2 024 7 $a10.1007/978-3-0348-0921-4 035 $a(CKB)3710000000588233 035 $a(EBL)4389996 035 $a(SSID)ssj0001653371 035 $a(PQKBManifestationID)16433832 035 $a(PQKBTitleCode)TC0001653371 035 $a(PQKBWorkID)14982598 035 $a(PQKB)10448971 035 $a(DE-He213)978-3-0348-0921-4 035 $a(MiAaPQ)EBC4389996 035 $a(PPN)192221868 035 $a(EXLCZ)993710000000588233 100 $a20160204d2016 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCompactifying Moduli Spaces /$fby Paul Hacking, Radu Laza, Dragos Oprea ; edited by Gilberto Bini, Martí Lahoz, Emanuele Macrí, Paolo Stellari 205 $a1st ed. 2016. 210 1$aBasel :$cSpringer Basel :$cImprint: Birkhäuser,$d2016. 215 $a1 online resource (141 p.) 225 1 $aAdvanced Courses in Mathematics - CRM Barcelona,$x2297-0304 300 $aDescription based upon print version of record. 311 $a3-0348-0920-4 320 $aIncludes bibliographical references. 327 $aForeword -- 1: Perspectives on moduli spaces -- The GIT Approach to constructing moduli spaces -- Moduli and periods -- The KSBA approach to moduli spaces -- Bibliography -- 2: Compact moduli of surfaces and vector bundles -- Moduli spaces of surfaces of general type -- Wahl singularities -- Examples of degenerations of Wahl type -- Exceptional vector bundles associated to Wahl degenerations -- Examples -- Bibliography -- 3: Notes on the moduli space of stable quotients -- Morphism spaces and Quot schemes over a fixed curve -- Stable quotients -- Stable quotient invariants -- Wall-crossing and other geometries -- Bibliography. 330 $aThis book focusses on a large class of objects in moduli theory and provides different perspectives from which compactifications of moduli spaces may be investigated. Three contributions give an insight on particular aspects of moduli problems. In the first of them, various ways to construct and compactify moduli spaces are presented. In the second, some questions on the boundary of moduli spaces of surfaces are addressed. Finally, the theory of stable quotients is explained, which yields meaningful compactifications of moduli spaces of maps. Both advanced graduate students and researchers in algebraic geometry will find this book a valuable read. 410 0$aAdvanced Courses in Mathematics - CRM Barcelona,$x2297-0304 606 $aGeometry, Algebraic 606 $aAlgebraic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M11019 615 0$aGeometry, Algebraic. 615 14$aAlgebraic Geometry. 676 $a516.35 676 $a516.35 700 $aHacking$b Paul$4aut$4http://id.loc.gov/vocabulary/relators/aut$0755862 702 $aLaza$b Radu$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aOprea$b Dragos$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aBini$b Gilberto$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aLahoz$b Martí$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aMacrí$b Emanuele$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aStellari$b Paolo$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254094303321 996 $aCompactifying Moduli Spaces$92004684 997 $aUNINA