LEADER 05180nam 22007815 450 001 9910254087503321 005 20220405171904.0 010 $a3-319-39228-X 024 7 $a10.1007/978-3-319-39228-8 035 $a(CKB)3710000000872811 035 $a(DE-He213)978-3-319-39228-8 035 $a(MiAaPQ)EBC4699882 035 $a(PPN)195512359 035 $a(EXLCZ)993710000000872811 100 $a20160927d2016 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvances in iterative methods for nonlinear equations /$fedited by Sergio Amat, Sonia Busquier 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (V, 286 p. 117 illus., 113 illus. in color.) 225 1 $aSEMA SIMAI Springer Series,$x2199-3041 ;$v10 311 $a3-319-39227-1 320 $aIncludes bibliographical references at the end of each chapters. 327 $a1 S. Amat, S. Busquier, A. A. Magrenan and L. Orcos: An overview on Steffensen-type methods -- 2 Ioannis K. Argyros and Daniel Gonzalez: Newton?s Method for Convex Optimization -- 3 I. K. Argyros and Á. A. Magreñán: Inexact Newton methods on Riemannian Manifolds -- 4 Alicia Cordero and Juan R. Torregrosa: On the design of optimal iterative methods for solving nonlinear equations -- 5 J. A. Ezquerro and M. A. Hernandez-Veron: The theory of Kantorovich for Newton's method: conditions on the second derivative -- 6 J.-C. Yakoubsohn, J. M. Gutiérrez and Á. A. Magreñán: Complexity of an homotopy method at the neighbourhood of a zero -- 7 M. A. Hernandez-Veron and N. Romero: A qualitative analysis of a family of Newton-like iterative process with R-order of convergence at least three -- 8 J. M. Gutierrez, L. J. Hernandez, Á. A. Magreñán and M. T. Rivas: Measures of the basins of attracting n-cycles for the relaxed Newton's method -- 9 Miquel Grau-Sanchez and Miquel Noguera: On convergence and efficiency in the resolution of systems of nonlinear equations from a local analysis. 330 $aThis book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations, and their approximation. . 410 0$aSEMA SIMAI Springer Series,$x2199-3041 ;$v10 606 $aNumerical analysis 606 $aDynamics 606 $aErgodic theory 606 $aFunctional analysis 606 $aDifference equations 606 $aFunctional equations 606 $aComputer mathematics 606 $aAlgorithms 606 $aNumerical Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M14050 606 $aDynamical Systems and Ergodic Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 606 $aDifference and Functional Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12031 606 $aComputational Science and Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/M14026 606 $aAlgorithms$3https://scigraph.springernature.com/ontologies/product-market-codes/M14018 615 0$aNumerical analysis. 615 0$aDynamics. 615 0$aErgodic theory. 615 0$aFunctional analysis. 615 0$aDifference equations. 615 0$aFunctional equations. 615 0$aComputer mathematics. 615 0$aAlgorithms. 615 14$aNumerical Analysis. 615 24$aDynamical Systems and Ergodic Theory. 615 24$aFunctional Analysis. 615 24$aDifference and Functional Equations. 615 24$aComputational Science and Engineering. 615 24$aAlgorithms. 676 $a518.26 702 $aAmat$b Sergio$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aBusquier$b Sonia$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254087503321 996 $aAdvances in iterative methods for nonlinear equations$91523079 997 $aUNINA