LEADER 03714nam 22007095 450 001 9910254085403321 005 20200630120206.0 010 $a3-319-33338-0 024 7 $a10.1007/978-3-319-33338-0 035 $a(CKB)3710000000726843 035 $a(DE-He213)978-3-319-33338-0 035 $a(MiAaPQ)EBC4543269 035 $a(PPN)194379914 035 $a(EXLCZ)993710000000726843 100 $a20160607d2016 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aOptimization of Polynomials in Non-Commuting Variables /$fby Sabine Burgdorf, Igor Klep, Janez Povh 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (XV, 104 p. 2 illus. in color.) 225 1 $aSpringerBriefs in Mathematics,$x2191-8198 311 $a3-319-33336-4 320 $aIncludes bibliographical references at the end of each chapters and index. 330 $aThis book presents recent results on positivity and optimization of polynomials in non-commuting variables. Researchers in non-commutative algebraic geometry, control theory, system engineering, optimization, quantum physics and information science will find the unified notation and mixture of algebraic geometry and mathematical programming useful. Theoretical results are matched with algorithmic considerations; several examples and information on how to use NCSOStools open source package to obtain the results provided. Results are presented on detecting the eigenvalue and trace positivity of polynomials in non-commuting variables using Newton chip method and Newton cyclic chip method, relaxations for constrained and unconstrained optimization problems, semidefinite programming formulations of the relaxations and finite convergence of the hierarchies of these relaxations, and the practical efficiency of algorithms. 410 0$aSpringerBriefs in Mathematics,$x2191-8198 606 $aGeometry, Algebraic 606 $aQuantum computers 606 $aOperations research 606 $aManagement science 606 $aComputer software 606 $aSystem theory 606 $aAlgebraic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M11019 606 $aQuantum Computing$3https://scigraph.springernature.com/ontologies/product-market-codes/M14070 606 $aOperations Research, Management Science$3https://scigraph.springernature.com/ontologies/product-market-codes/M26024 606 $aMathematical Software$3https://scigraph.springernature.com/ontologies/product-market-codes/M14042 606 $aSystems Theory, Control$3https://scigraph.springernature.com/ontologies/product-market-codes/M13070 615 0$aGeometry, Algebraic. 615 0$aQuantum computers. 615 0$aOperations research. 615 0$aManagement science. 615 0$aComputer software. 615 0$aSystem theory. 615 14$aAlgebraic Geometry. 615 24$aQuantum Computing. 615 24$aOperations Research, Management Science. 615 24$aMathematical Software. 615 24$aSystems Theory, Control. 676 $a519.3 700 $aBurgdorf$b Sabine$4aut$4http://id.loc.gov/vocabulary/relators/aut$0756027 702 $aKlep$b Igor$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aPovh$b Janez$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254085403321 996 $aOptimization of Polynomials in Non-Commuting Variables$92129510 997 $aUNINA