LEADER 04069nam 22007335 450 001 9910254078803321 005 20250609111446.0 010 $a3-319-51829-1 024 7 $a10.1007/978-3-319-51829-9 035 $a(CKB)3710000001100884 035 $a(MiAaPQ)EBC4822606 035 $a(DE-He213)978-3-319-51829-9 035 $a(PPN)199767467 035 $a(MiAaPQ)EBC6237365 035 $a(EXLCZ)993710000001100884 100 $a20170314d2016 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aCombinatorics and Complexity of Partition Functions /$fby Alexander Barvinok 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (304 pages) $cillustrations 225 1 $aAlgorithms and Combinatorics,$x0937-5511 ;$v30 311 08$a3-319-51828-3 320 $aIncludes bibliographical references and index. 327 $aChapter I. Introduction -- Chapter II. Preliminaries -- Chapter III. Permanents -- Chapter IV. Hafnians and Multidimensional Permanents -- Chapter V. The Matching Polynomial -- Chapter VI. The Independence Polynomial -- Chapter VII. The Graph Homomorphism Partition Function -- Chapter VIII. Partition Functions of Integer Flows -- References -- Index. 330 $aPartition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems. The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates. . 410 0$aAlgorithms and Combinatorics,$x0937-5511 ;$v30 606 $aAlgorithms 606 $aCombinatorial analysis 606 $aComputer science?Mathematics 606 $aStatistical physics 606 $aDynamics 606 $aApproximation theory 606 $aMathematics of Algorithmic Complexity$3https://scigraph.springernature.com/ontologies/product-market-codes/M13130 606 $aCombinatorics$3https://scigraph.springernature.com/ontologies/product-market-codes/M29010 606 $aDiscrete Mathematics in Computer Science$3https://scigraph.springernature.com/ontologies/product-market-codes/I17028 606 $aComplex Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/P33000 606 $aAlgorithms$3https://scigraph.springernature.com/ontologies/product-market-codes/M14018 606 $aApproximations and Expansions$3https://scigraph.springernature.com/ontologies/product-market-codes/M12023 615 0$aAlgorithms. 615 0$aCombinatorial analysis. 615 0$aComputer science?Mathematics. 615 0$aStatistical physics. 615 0$aDynamics. 615 0$aApproximation theory. 615 14$aMathematics of Algorithmic Complexity. 615 24$aCombinatorics. 615 24$aDiscrete Mathematics in Computer Science. 615 24$aComplex Systems. 615 24$aAlgorithms. 615 24$aApproximations and Expansions. 676 $a510 700 $aBarvinok$b Alexander$4aut$4http://id.loc.gov/vocabulary/relators/aut$0322075 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254078803321 996 $aCombinatorics and complexity of partition functions$91523225 997 $aUNINA