LEADER 03775nam 22005655 450 001 9910254076103321 005 20251113195213.0 010 $a3-319-21018-1 024 7 $a10.1007/978-3-319-21018-6 035 $a(CKB)3710000000667103 035 $a(DE-He213)978-3-319-21018-6 035 $a(MiAaPQ)EBC4527874 035 $a(PPN)194076660 035 $a(EXLCZ)993710000000667103 100 $a20160512d2016 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIntegral Operators in Non-Standard Function Spaces $eVolume 2: Variable Exponent Hölder, Morrey?Campanato and Grand Spaces /$fby Vakhtang Kokilashvili, Alexander Meskhi, Humberto Rafeiro, Stefan Samko 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2016. 215 $a1 online resource (XXIII, 1003 p.) 225 1 $aOperator Theory: Advances and Applications,$x2296-4878 ;$v249 311 08$a3-319-21017-3 320 $aIncludes bibliographical references and index. 327 $aIV: Grand Lebesgue Spaces -- 14 Maximal Functions and Potentials -- 15 Grand Lebesgue Spaces on Sets with Infinite Measure -- V: Grand Morrey Spaces -- 16 Maximal Functions, Fractional and Singular Integrals -- 17 Multiple Operators on the Cone of Decreasing Functions -- A: Grand Bochner Spaces -- Bibliography -- Symbol Index -- Subject Index.IV: Grand Lebesgue Spaces -- 14 Maximal Functions and Potentials -- 15 Grand Lebesgue Spaces on Sets with Infinite Measure -- V: Grand Morrey Spaces -- 16 Maximal Functions, Fractional and Singular Integrals -- 17 Multiple Operators on the Cone of Decreasing Functions -- A: Grand Bochner Spaces -- Bibliography -- Symbol Index -- Subject Index. 330 $aThis book, the result of the authors? long and fruitful collaboration, focuses on integral operators in new, non-standard function spaces and presents a systematic study of the boundedness and compactness properties of basic, harmonic analysis integral operators in the following function spaces, among others: variable exponent Lebesgue and amalgam spaces, variable Hölder spaces, variable exponent Campanato, Morrey and Herz spaces, Iwaniec-Sbordone (grand Lebesgue) spaces, grand variable exponent Lebesgue spaces unifying the two spaces mentioned above, grand Morrey spaces, generalized grand Morrey spaces, and weighted analogues of some of them. The results obtained are widely applied to non-linear PDEs, singular integrals and PDO theory. One of the book?s most distinctive features is that the majority of the statements proved here are in the form of criteria. The book is intended for a broad audience, ranging from researchers in the area to experts in applied mathematicsand prospective students. 410 0$aOperator Theory: Advances and Applications,$x2296-4878 ;$v249 606 $aOperator theory 606 $aFunctional analysis 606 $aOperator Theory 606 $aFunctional Analysis 615 0$aOperator theory. 615 0$aFunctional analysis. 615 14$aOperator Theory. 615 24$aFunctional Analysis. 676 $a515.723 700 $aKokilashvili$b Vakhtang$4aut$4http://id.loc.gov/vocabulary/relators/aut$060040 702 $aMeskhi$b Alexander$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aRafeiro$b Humberto$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aSamko$b Stefan$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254076103321 996 $aIntegral Operators in Non-Standard Function Spaces$91983098 997 $aUNINA