LEADER 03367nam 22005535 450 001 9910254072803321 005 20220414211713.0 010 $a3-0348-0952-2 024 7 $a10.1007/978-3-0348-0952-8 035 $a(CKB)3710000000717736 035 $a(EBL)4528415 035 $a(DE-He213)978-3-0348-0952-8 035 $a(MiAaPQ)EBC4528415 035 $z(PPN)226699838 035 $a(PPN)194075370 035 $a(EXLCZ)993710000000717736 100 $a20160513d2016 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aModule theory, extending modules and generalizations /$fby Adnan Tercan, Canan C. Yücel 205 $a1st ed. 2016. 210 1$aBasel :$cSpringer Basel :$cImprint: Birkhäuser,$d2016. 215 $a1 online resource (389 p.) 225 1 $aFrontiers in Mathematics,$x1660-8046 300 $aDescription based upon print version of record. 311 $a3-0348-0950-6 320 $aIncludes bibliographical references and index. 327 $aPreface -- Introduction -- List of Symbols -- Introducing modules -- Types of Relative Injectivity -- Extending Property and Related Concepts -- Inner Generalizations of Extending Modules -- Outer Generalizations of Extending Modules -- Dual Goldie and EC-complement Versions of the Extending Property -- Open Problems and Questions -- Appendix -- References -- Index. 330 $aThe main focus of this monograph is to offer a comprehensive presentation of known and new results on various generalizations of CS-modules and CS-rings. Extending (or CS) modules are generalizations of injective (and also semisimple or uniform) modules. While the theory of CS-modules is well documented in monographs and textbooks, results on generalized forms of the CS property as well as dual notions are far less present in the literature. With their work the authors provide a solid background to module theory, accessible to anyone familiar with basic abstract algebra. The focus of the book is on direct sums of CS-modules and classes of modules related to CS-modules, such as relative (injective) ejective modules, (quasi) continuous modules, and lifting modules. In particular, matrix CS-rings are studied and clear proofs of fundamental decomposition results on CS-modules over commutative domains are given, thus complementing existing monographs in this area. Open problems round out the work and establish the basis for further developments in the field. The main text is complemented by a wealth of examples and exercises. 410 0$aFrontiers in Mathematics,$x1660-8046 606 $aAssociative rings 606 $aRings (Algebra) 606 $aAssociative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11027 615 0$aAssociative rings. 615 0$aRings (Algebra). 615 14$aAssociative Rings and Algebras. 676 $a512.4 700 $aTercan$b Adnan$4aut$4http://id.loc.gov/vocabulary/relators/aut$0755980 702 $aYücel$b Canan C$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254072803321 996 $aModule Theory, Extending Modules and Generalizations$91963842 997 $aUNINA