LEADER 03587nam 22006855 450 001 9910254068603321 005 20251116150238.0 010 $a3-319-30518-2 024 7 $a10.1007/978-3-319-30518-9 035 $a(CKB)3710000000627519 035 $a(EBL)4460321 035 $a(SSID)ssj0001654076 035 $a(PQKBManifestationID)16433926 035 $a(PQKBTitleCode)TC0001654076 035 $a(PQKBWorkID)14982593 035 $a(PQKB)11735485 035 $a(DE-He213)978-3-319-30518-9 035 $a(MiAaPQ)EBC4460321 035 $a(PPN)192773259 035 $a(EXLCZ)993710000000627519 100 $a20160330d2016 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 12$aA kaleidoscopic view of graph colorings /$fby Ping Zhang 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (160 p.) 225 1 $aSpringerBriefs in Mathematics,$x2191-8198 300 $aDescription based upon print version of record. 311 08$a3-319-30516-6 320 $aIncludes bibliographical references and index. 327 $a1. Introduction -- 2. Binomial Edge Colorings -- 3. Kaleidoscopic Edge Colorings -- 4. Graceful Vertex Colorings -- 5.Harmonious Vertex Colorings -- 6. A Map Coloring Problem -- 7. Set Colorings -- 8. Multiset Colorings -- 9. Metric Colorings -- 10. Sigma Colorings -- 11. Modular Colorings -- 12. A Banquet Seating Problem -- 13. Irregular Colorings -- 14. Recognizable Colorings -- References -- Index. . 330 $aThis book describes kaleidoscopic topics that have developed in the area of graph colorings. Unifying current material on graph coloring, this book describes current information on vertex and edge colorings in graph theory, including harmonious colorings, majestic colorings, kaleidoscopic colorings and binomial colorings. Recently there have been a number of breakthroughs in vertex colorings that give rise to other colorings in a graph, such as graceful labelings of graphs that have been reconsidered under the language of colorings. The topics presented in this book include sample detailed proofs and illustrations, which depicts elements that are often overlooked. This book is ideal for graduate students and researchers in graph theory, as it covers a broad range of topics and makes connections between recent developments and well-known areas in graph theory. 410 0$aSpringerBriefs in Mathematics,$x2191-8198 606 $aGraph theory 606 $aCombinatorial analysis 606 $aApplied mathematics 606 $aEngineering mathematics 606 $aGraph Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M29020 606 $aCombinatorics$3https://scigraph.springernature.com/ontologies/product-market-codes/M29010 606 $aApplications of Mathematics$3https://scigraph.springernature.com/ontologies/product-market-codes/M13003 615 0$aGraph theory. 615 0$aCombinatorial analysis. 615 0$aApplied mathematics. 615 0$aEngineering mathematics. 615 14$aGraph Theory. 615 24$aCombinatorics. 615 24$aApplications of Mathematics. 676 $a511.56 700 $aZhang$b Ping$4aut$4http://id.loc.gov/vocabulary/relators/aut$0477502 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254068603321 996 $aKaleidoscopic view of graph colorings$91523053 997 $aUNINA