LEADER 06731nam 22008055 450 001 9910254062403321 005 20250417080505.0 010 $a1-4939-3408-2 024 7 $a10.1007/978-1-4939-3408-9 035 $a(CKB)3710000000653418 035 $a(SSID)ssj0001665970 035 $a(PQKBManifestationID)16455725 035 $a(PQKBTitleCode)TC0001665970 035 $a(PQKBWorkID)15000664 035 $a(PQKB)11469564 035 $a(DE-He213)978-1-4939-3408-9 035 $a(MiAaPQ)EBC6312826 035 $a(MiAaPQ)EBC5594539 035 $a(Au-PeEL)EBL5594539 035 $a(OCoLC)948661162 035 $a(PPN)193442485 035 $a(EXLCZ)993710000000653418 100 $a20160426d2016 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aHarmonic Analysis on Symmetric Spaces?Higher Rank Spaces, Positive Definite Matrix Space and Generalizations /$fby Audrey Terras 205 $a2nd ed. 2016. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Springer,$d2016. 215 $a1 online resource (XV, 487 p. 41 illus., 21 illus. in color.) 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a1-4939-3406-6 327 $aIntro -- Preface to the First Edition -- Preface to the Second Edition -- Contents -- List of Figures -- 1 The Space Pn of Positive nn Matrices -- 1.1 Geometry and Analysis on Pn -- 1.1.1 Introduction -- 1.1.2 Elementary Results -- 1.1.3 Geodesics and Arc Length -- 1.1.4 Measure and Integration on Pn -- 1.1.5 Differential Operators on Pn -- 1.1.6 A List of the Main Formulas Derived in Section 1.1 -- 1.1.7 An Application to Multivariate Statistics -- 1.2 Special Functions on Pn -- 1.2.1 Power and Gamma Functions -- 1.2.2 K-Bessel Functions -- 1.2.3 Spherical Functions -- 1.2.4 The Wishart Distribution -- 1.2.5 Richards' Extension of the Asymptotics of Spherical Functions for P3 to Pn for General n -- 1.3 Harmonic Analysis on Pn in Polar Coordinates -- 1.3.1 Properties of the Helgason-Fourier Transform on Pn -- 1.3.2 Beginning of the Discussion of Part (1) of Theorem 1.3.1-Steps 1 and 2 -- 1.3.3 End of the Discussion of Part (1) of Theorem 1.3.1-Steps 3 and 4 -- 1.3.4 Applications-Richards' Central Limit Theorem for K-Invariant Functions on Pn -- 1.3.5 Quantum Chaos and Random Matrix Theory -- 1.3.6 Other Directions in the Labyrinth -- 1.4 Fundamental Domains for Pn/GL(n,Z) -- 1.4.1 Introduction -- 1.4.2 Minkowski's Fundamental Domain -- 1.4.3 Grenier's Fundamental Domain -- Grenier's Reduction Algorithm -- 1.4.4 Integration over Fundamental Domains -- 1.5 Maass Forms for GL(n,Z) and Harmonic Analysis on Pn/GL(n,Z) -- 1.5.1 Analytic Continuation of Eisenstein Series by the Method of Inserting Larger Parabolic Subgroups -- 1.5.2 Hecke Operators and Analytic Continuation of L-Functions Associated with Maass Forms by the Method of Theta Functions -- 1.5.3 Fourier Expansions of Eisenstein Series -- Generalities on Fourier Expansions of Eisenstein Series -- Remarks on Maass Cusp Forms. 327 $a1.5.4 Update on Maass Cusp Forms for SL(3,Z) and L-Functions Plus Truncating Eisenstein Series -- Maass Cusp Forms for SL(3,Z) and L-Functions -- Langlands' Inner Product Formulas for Truncated Eisenstein Series -- 1.5.5 Remarks on Harmonic Analysis on the Fundamental Domain -- 1.5.6 Finite and Other Analogues -- 2 The General Noncompact Symmetric Space -- 2.1 Geometry and Analysis on G/K -- 2.1.1 Symmetric Spaces, Lie Groups, and Lie Algebras -- 2.1.2 Examples of Symmetric Spaces -- Plan for Construction of Noncompact Symmetric Spaces of Type III -- Type a Examples -- Type c Examples -- 2.1.3 Cartan, Iwasawa, and Polar Decompositions, Roots -- Three Examples of Iwasawa Decompositions of Real Semisimple Lie Algebras -- Examples of the Polar Decomposition -- 2.1.4 Geodesics and the Weyl Group -- 2.1.5 Integral Formulas -- Examples -- Invariant Volume Elements on the Symmetric Spaces of GL(n,R) and Sp(n,R) -- 2.1.6 Invariant Differential Operators -- 2.1.7 Special Functions and Harmonic Analysis on Symmetric Spaces -- 2.1.8 An Example of a Symmetric Space of Type IV: The Quaternionic Upper Half 3-Space -- 2.2 Geometry and Analysis on "026E30F G/K -- 2.2.1 Fundamental Domains -- 2.2.2 Automorphic Forms -- Questions Arising from Proposition 2.2.3 -- 2.2.3 Trace Formulas -- Trace Formula for Discrete Acting on the Quaternionic Upper Half Plane -- Trace Formula for Discrete Acting on Hm -- Trace Formula for Acting on the Siegel Upper Half Space -- References -- Index. 330 $aThis text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards?s central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random  matrix theory, and on advances in the theory of automorphic forms on arithmetic groups. 606 $aHarmonic analysis 606 $aNumber theory 606 $aGeometry 606 $aDiscrete mathematics 606 $aMathematics 606 $aStatistics 606 $aAbstract Harmonic Analysis 606 $aNumber Theory 606 $aGeometry 606 $aDiscrete Mathematics 606 $aApplications of Mathematics 606 $aStatistical Theory and Methods 615 0$aHarmonic analysis. 615 0$aNumber theory. 615 0$aGeometry. 615 0$aDiscrete mathematics. 615 0$aMathematics. 615 0$aStatistics. 615 14$aAbstract Harmonic Analysis. 615 24$aNumber Theory. 615 24$aGeometry. 615 24$aDiscrete Mathematics. 615 24$aApplications of Mathematics. 615 24$aStatistical Theory and Methods. 676 $a515.2433 700 $aTerras$b Audrey$4aut$4http://id.loc.gov/vocabulary/relators/aut$056408 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254062403321 996 $aHarmonic analysis on symmetric spaces?higher rank spaces, positive definite matrix space and generalizations$91523378 997 $aUNINA