LEADER 03663nam 22006735 450 001 9910254046203321 005 20200704145149.0 010 $a981-10-2510-X 024 7 $a10.1007/978-981-10-2510-5 035 $a(CKB)3710000000873208 035 $a(DE-He213)978-981-10-2510-5 035 $a(MiAaPQ)EBC4699972 035 $a(PPN)195507398 035 $a(EXLCZ)993710000000873208 100 $a20160928d2016 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIn silico Modeling and Experimental Validation for Improving Methanogenesis from CO2 via M. maripaludis /$fby Nishu Goyal 205 $a1st ed. 2016. 210 1$aSingapore :$cSpringer Singapore :$cImprint: Springer,$d2016. 215 $a1 online resource (XXV, 122 p. 32 illus., 5 illus. in color.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 311 $a981-10-2509-6 320 $aIncudes bibliographical references at the end of each chapters. 327 $aIntroduction -- Literature Review -- A Genome-scale Metabolic Model of M. maripaludis S2 for CO2 Capture and Conversion to Methane -- Flux Measurements and Maintenance Energy for CO2 Utilization by M. maripaludis -- Diazotrophy Enhances CO2 to Methane Conversion in M.maripaludis -- Contributions and Future Recommendations. 330 $aThis thesis explores the ability of M. maripaludis to capture and convert CO2 to methane in the presence of free nitrogen, and offers a consolidated review of the metabolic processes and applications of M. maripaludis. Further, it develops, validates and analyzes the first genome-scale metabolic model (iMM518) of M. maripaludis. Readers will discover, for the first time, the impact of nitrogen fixation on methane production. As such, the thesis will be of interest to researchers working on M. maripaludis, biofuels and bioenergy, systems biology modeling and its experimental validation, estimation of maintenance energy parameters, nitrogen fixing microbes, and bioremediation. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aBiochemical engineering 606 $aEnvironmental engineering 606 $aBiotechnology 606 $aRenewable energy resources 606 $aSystems biology 606 $aBiological systems 606 $aBiochemical Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/C12029 606 $aEnvironmental Engineering/Biotechnology$3https://scigraph.springernature.com/ontologies/product-market-codes/U33000 606 $aRenewable and Green Energy$3https://scigraph.springernature.com/ontologies/product-market-codes/111000 606 $aSystems Biology$3https://scigraph.springernature.com/ontologies/product-market-codes/P27050 615 0$aBiochemical engineering. 615 0$aEnvironmental engineering. 615 0$aBiotechnology. 615 0$aRenewable energy resources. 615 0$aSystems biology. 615 0$aBiological systems. 615 14$aBiochemical Engineering. 615 24$aEnvironmental Engineering/Biotechnology. 615 24$aRenewable and Green Energy. 615 24$aSystems Biology. 676 $a572.429 700 $aGoyal$b Nishu$4aut$4http://id.loc.gov/vocabulary/relators/aut$01064833 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254046203321 996 $aIn silico Modeling and Experimental Validation for Improving Methanogenesis from CO2 via M. maripaludis$92541138 997 $aUNINA