LEADER 03674nam 22006615 450 001 9910253988603321 005 20200701041136.0 024 7 $a10.1007/978-3-319-45057-5 035 $a(CKB)3710000000892255 035 $a(DE-He213)978-3-319-45057-5 035 $a(MiAaPQ)EBC4713761 035 $a(PPN)196324289 035 $a(EXLCZ)993710000000892255 100 $a20161006d2016 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGeoenergy Modeling II $eShallow Geothermal Systems /$fby Haibing Shao, Philipp Hein, Agnes Sachse, Olaf Kolditz 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (XIII, 94 p. 35 illus., 30 illus. in color.) 225 1 $aComputational Modeling of Energy Systems,$x2570-1339 311 $a3-319-45055-7 311 $a3-319-45057-3 320 $aIncludes bibliographical references. 327 $a1 Introduction -- 2 Theory Governing Equations and Model Implementations -- 3 OGS project Simulating heat transport model with BHEs -- 4 BHE meshing tool -- 5 Benchmarks -- 6 Case Study: A GSHP system in the Leipzig area -- 7 Summary and Outlook. 330 $aThis book is dedicated to the numerical modeling of shallow geothermal systems. The utilization of shallow geothermal energy involves the integration of multiple Borehole Heat Exchangers (BHE) with Ground Source Heat Pump (GSHP) systems to provide heating and cooling. The modeling practices explained in this book can improve the efficiency of these increasingly common systems. The book begins by explaining the basic theory of heat transport processes in man-made as well as natural media. . These techniques are then applied to the simulation of borehole heat exchangers and their interaction with the surrounding soil. The numerical and analytical models are verified against analytical solutions and measured data from a Thermal Response Test, and finally, a real test site is analyzed through the model and discussed with regard to BHE and GSHP system design and optimization. . 410 0$aComputational Modeling of Energy Systems,$x2570-1339 606 $aRenewable energy resources 606 $aThermodynamics 606 $aHeat engineering 606 $aHeat transfer 606 $aMass transfer 606 $aRenewable and Green Energy$3https://scigraph.springernature.com/ontologies/product-market-codes/111000 606 $aRenewable and Green Energy$3https://scigraph.springernature.com/ontologies/product-market-codes/111000 606 $aEngineering Thermodynamics, Heat and Mass Transfer$3https://scigraph.springernature.com/ontologies/product-market-codes/T14000 615 0$aRenewable energy resources. 615 0$aThermodynamics. 615 0$aHeat engineering. 615 0$aHeat transfer. 615 0$aMass transfer. 615 14$aRenewable and Green Energy. 615 24$aRenewable and Green Energy. 615 24$aEngineering Thermodynamics, Heat and Mass Transfer. 676 $a621.042 700 $aShao$b Haibing$4aut$4http://id.loc.gov/vocabulary/relators/aut$0866280 702 $aHein$b Philipp$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aSachse$b Agnes$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aKolditz$b Olaf$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910253988603321 996 $aGeoenergy Modeling II$91933348 997 $aUNINA