LEADER 04020nam 22006735 450 001 9910253983103321 005 20200701041124.0 010 $a3-319-31335-5 024 7 $a10.1007/978-3-319-31335-1 035 $a(CKB)3710000000734721 035 $a(DE-He213)978-3-319-31335-1 035 $a(MiAaPQ)EBC4572695 035 $z(PPN)258862564 035 $a(PPN)194379892 035 $a(EXLCZ)993710000000734721 100 $a20160627d2016 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGeoenergy Modeling I$b[electronic resource] $eGeothermal Processes in Fractured Porous Media /$fby Norbert Böttcher, Norihiro Watanabe, Uwe-Jens Görke, Olaf Kolditz 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (XII, 107 p. 56 illus.) 225 1 $aComputational Modeling of Energy Systems,$x2570-1339 311 $a3-319-31333-9 320 $aIncludes bibliographical references. 327 $aGeothermal Energy -- Theory -- Numerical Methods -- Heat Transport Exercises -- Introduction to Geothermal Case Studies -- Symbols -- Keywords -- References. 330 $aDemonstrates how to model flow and heat transport processes in porous and fractured media related to geothermal energy applications Provides theoretical scientific background and suggestions for future applications Includes five step-by-step OpenGeoSys exercises, highlighting the most important geothermal computational areas, including heat diffusion, heat advection in porous and fractured media, and heat convection This introduction to geothermal modeling deals with flow and heat transport processes in porous and fractured media related to geothermal energy applications. Following background coverage of geothermal resources and utilization in several countries, the basics of continuum mechanics for heat transport processes, as well as numerical methods for solving underlying governing equations are discussed. This examination forms the theoretical basis for five included step-by-step OpenGeoSys exercises, highlighting the most important computational areas within geothermal resource utilization, including heat diffusion, heat advection in porous and fractured media, and heat convection. The book concludes with an outlook on practical follow-up contributions investigating the numerical simulation of shallow and deep geothermal systems. 410 0$aComputational Modeling of Energy Systems,$x2570-1339 606 $aRenewable energy resources 606 $aThermodynamics 606 $aHeat engineering 606 $aHeat transfer 606 $aMass transfer 606 $aRenewable and Green Energy$3https://scigraph.springernature.com/ontologies/product-market-codes/111000 606 $aRenewable and Green Energy$3https://scigraph.springernature.com/ontologies/product-market-codes/111000 606 $aEngineering Thermodynamics, Heat and Mass Transfer$3https://scigraph.springernature.com/ontologies/product-market-codes/T14000 615 0$aRenewable energy resources. 615 0$aThermodynamics. 615 0$aHeat engineering. 615 0$aHeat transfer. 615 0$aMass transfer. 615 14$aRenewable and Green Energy. 615 24$aRenewable and Green Energy. 615 24$aEngineering Thermodynamics, Heat and Mass Transfer. 676 $a620 700 $aBöttcher$b Norbert$4aut$4http://id.loc.gov/vocabulary/relators/aut$0875356 702 $aWatanabe$b Norihiro$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aGörke$b Uwe-Jens$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aKolditz$b Olaf$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910253983103321 996 $aGeoenergy Modeling I$91954347 997 $aUNINA