LEADER 03742nam 22007215 450 001 9910253967503321 005 20200701073306.0 010 $a981-10-0631-8 024 7 $a10.1007/978-981-10-0631-9 035 $a(CKB)3710000000602478 035 $a(EBL)4427872 035 $a(SSID)ssj0001653998 035 $a(PQKBManifestationID)16433603 035 $a(PQKBTitleCode)TC0001653998 035 $a(PQKBWorkID)14982983 035 $a(PQKB)11285046 035 $a(DE-He213)978-981-10-0631-9 035 $a(MiAaPQ)EBC4427872 035 $a(PPN)192220039 035 $a(EXLCZ)993710000000602478 100 $a20160224d2016 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aBig Visual Data Analysis $eScene Classification and Geometric Labeling /$fby Chen Chen, Yuzhuo Ren, C.-C. Jay Kuo 205 $a1st ed. 2016. 210 1$aSingapore :$cSpringer Singapore :$cImprint: Springer,$d2016. 215 $a1 online resource (128 p.) 225 1 $aSpringerBriefs in Signal Processing,$x2196-4076 300 $aDescription based upon print version of record. 311 $a981-10-0629-6 320 $aIncludes bibliographical references. 327 $aIntroduction -- Scene Understanding Datasets -- Indoor/Outdoor classi?cation with Multiple Experts -- Outdoor Scene Classi?cation Using Labeled Segments -- Global-Attributes Assisted Outdoor Scene Geometric Labeling -- Conclusion and Future Work. 330 $aThis book offers an overview of traditional big visual data analysis approaches and provides state-of-the-art solutions for several scene comprehension problems, indoor/outdoor classification, outdoor scene classification, and outdoor scene layout estimation. It is illustrated with numerous natural and synthetic color images, and extensive statistical analysis is provided to help readers visualize big visual data distribution and the associated problems. Although there has been some research on big visual data analysis, little work has been published on big image data distribution analysis using the modern statistical approach described in this book. By presenting a complete methodology on big visual data analysis with three illustrative scene comprehension problems, it provides a generic framework that can be applied to other big visual data analysis tasks. 410 0$aSpringerBriefs in Signal Processing,$x2196-4076 606 $aSignal processing 606 $aImage processing 606 $aSpeech processing systems 606 $aOptical data processing 606 $aMathematics 606 $aVisualization 606 $aSignal, Image and Speech Processing$3https://scigraph.springernature.com/ontologies/product-market-codes/T24051 606 $aImage Processing and Computer Vision$3https://scigraph.springernature.com/ontologies/product-market-codes/I22021 606 $aVisualization$3https://scigraph.springernature.com/ontologies/product-market-codes/M14034 615 0$aSignal processing. 615 0$aImage processing. 615 0$aSpeech processing systems. 615 0$aOptical data processing. 615 0$aMathematics. 615 0$aVisualization. 615 14$aSignal, Image and Speech Processing. 615 24$aImage Processing and Computer Vision. 615 24$aVisualization. 676 $a620 700 $aChen$b Chen$4aut$4http://id.loc.gov/vocabulary/relators/aut$0761219 702 $aRen$b Yuzhuo$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aKuo$b C.-C. Jay$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910253967503321 996 $aBig Visual Data Analysis$92545039 997 $aUNINA