LEADER 03016nam 2200589 450 001 9910788854003321 005 20170822144145.0 010 $a1-4704-0527-X 035 $a(CKB)3360000000465105 035 $a(EBL)3114244 035 $a(SSID)ssj0000888838 035 $a(PQKBManifestationID)11453147 035 $a(PQKBTitleCode)TC0000888838 035 $a(PQKBWorkID)10865358 035 $a(PQKB)10856098 035 $a(MiAaPQ)EBC3114244 035 $a(RPAM)15444186 035 $a(PPN)195418107 035 $a(EXLCZ)993360000000465105 100 $a20150416h20092009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCompactification of the Drinfeld modular surfaces /$fThomas Lehmkuhl 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d2009. 210 4$dİ2009 215 $a1 online resource (113 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vNumber 921 300 $a"January 2009, volume 197, number 921 (third of 5 numbers)." 311 $a0-8218-4244-7 320 $aIncludes bibliographical references and index. 327 $a""Contents""; ""Introduction""; ""Chapter 1. Line Bundles""; ""1. Basic notions""; ""2. Homomorphisms of line bundles""; ""3. Quotients""; ""4. The convergence lemma""; ""Chapter 2. Drinfeld Modules""; ""1. Analytical definition of Drinfeld modules""; ""2. The category of Drinfeld modules""; ""3. Drinfeld modules over fields""; ""4. Level structures""; ""5. Modular manifolds""; ""6. Pseudo-Drinfeld modules""; ""Chapter 3. Deformation Theory""; ""1. Deformations of Drinfeld modules""; ""2. Deformations of isogenies""; ""3. Deformations of level structures"" 327 $a""4. Smoothness of the moduli spaces""""5. Group action on the moduli space""; ""Chapter 4. Tate Uniformization""; ""1. Formal schemes""; ""2. Good and stable reduction""; ""3. Lattices and Tate data""; ""4. Group action""; ""Chapter 5. Compactification of the Modular Surfaces""; ""1. Formal representability of Tate data""; ""2. The universal Drinfeld module with bad reduction""; ""3. Algebraization""; ""Appendix""; ""A. Induced schemes""; ""B. Construction of coherent sheaves""; ""Bibliography""; ""Glossary of Notations""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H"" 327 $a""I""""K""; ""L""; ""M""; ""P""; ""Q""; ""R""; ""S""; ""T"" 410 0$aMemoirs of the American Mathematical Society ;$vNumber 921. 606 $aDrinfeld modules 606 $aDeformations (Mechanics) 606 $aSurfaces, Algebraic 615 0$aDrinfeld modules. 615 0$aDeformations (Mechanics) 615 0$aSurfaces, Algebraic. 676 $a512/.42 700 $aLehmkuhl$b Thomas$01565972 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788854003321 996 $aCompactification of the Drinfeld modular surfaces$93836154 997 $aUNINA LEADER 01433nam0 2200433 450 001 9910227760403321 005 20250527104124.0 010 $a978-88-7075-907-5 100 $a20171120d2016---- km 00ita baa 101 0 $aita 102 $aIT 105 $a 001yy 200 1 $aClassificazione decimale Dewey e webDewey$econ istruzioni per l'utilizzo dei costruttori dei numeri della webDewey$fPiero Cavaleri$gcontributi di Valeria De Francesca ... [et al.] 210 $aMilano$cEditrice Bibliografica$cAssociazione italiana biblioteche$d2016 215 $a259 p.$d22 cm 225 1 $aProfessione bibliotecario$v1 610 0 $aClassificazione Decimale Dewey$aImpiego di internet 676 $a025.431$v23$zita 676 $a025.43$v23$zita 700 1$aCavaleri,$bPiero$0299358 702 1$aDe Francesca,$bValeria 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a9910227760403321 952 $aCAV025.43A$b1517$fDECBC 952 $a025.431 CAV 1$b4278$fBFS 952 $a60 025.431 CAVP 2016$b183/2017$fFAGBC 952 $aBIBL B 465$b537/2018$fFARBC 952 $aBIBLIO 8$b3331/18$fFSPBC 952 $a025.43 CAVP 01$b2022/1388$fFLFBC 952 $aXIX E 81$b2020/20$fFGBC 959 $aFGBC 959 $aDECBC 959 $aBFS 959 $aFAGBC 959 $aFARBC 959 $aFSPBC 996 $aClassificazione decimale Dewey e WebDewey$91400004 997 $aUNINA