LEADER 03509 am 2200805 n 450 001 9910214928203321 005 20170609 010 $a2-8218-8550-4 024 7 $a10.4000/books.pup.6937 035 $a(CKB)3710000001633424 035 $a(FrMaCLE)OB-pup-6937 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/47515 035 $a(PPN)203890116 035 $a(EXLCZ)993710000001633424 100 $a20170807j|||||||| ||| 0 101 0 $afre 135 $auu||||||m|||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFemmes Familles Filiations $eSociété et histoire /$fMarcel Bernos, Michèle Bitton 210 $aAix-en-Provence $cPresses universitaires de Provence$d2017 215 $a1 online resource (304 p.) 311 $a2-85399-566-6 330 $aDepuis que l?histoire des femmes a - récemment - gagné droit de cité, on n?a cessé de vérifier qu?elle couvrait, en vérité, tous les champs de l?histoire, parce qu?elle était bien celle de la moitié de l?humanité, jusque-là négligée. La vie sociale, bien des dimensions de l?économie, certaines expressions culturelles, l?analyse des mentalités, la « sphère du privé », voire la politique s?y éclairaient d?un jour nouveau. Yvonne Knibiehler a, dans plusieurs de ces domaines, fait ?uvre pionnière : histoire des mères et de la maternité principalement, mais aussi de la famille, de l?action sociale, de la paternité, du féminisme, de destins féminins? C?est en suivant des pistes qu?elle avait tracées que quelques un(e)s de ses ami(e)s ont voulu lui rendre hommage par des études inédites, qui ne sont pas sans quelques convergences. 606 $aWomen$zFrance$xHistory 606 $aWomen$zFrance$xSocial conditions 606 $aWomen in literature 606 $aFeminism$xHistory 606 $aWomen's studies$zFrance$xHistory 610 $agenre 610 $adivision sexuée des rôles 610 $aconditions sociales 610 $afemmes 615 0$aWomen$xHistory. 615 0$aWomen$xSocial conditions. 615 0$aWomen in literature. 615 0$aFeminism$xHistory. 615 0$aWomen's studies$xHistory. 700 $aAgulhon$b Maurice$0133367 701 $aAllard$b Paul$0467527 701 $aAntomarchi$b Véronique$01283276 701 $aArmogathe$b Daniel$0460479 701 $aBard$b Christine$0684013 701 $aBernos$b Marcel$01238345 701 $aBitton$b Michèle$01238346 701 $aCova$b Anne$01283277 701 $aDaune-Richard$b Anne-Marie$01283278 701 $aDermenjian$b Geneviève$0408735 701 $aGoutalier$b Régine$01283279 701 $aGuilhaumou$b Jacques$0310272 701 $aHaicault$b Monique$01207562 701 $aLapied$b Martine$0299415 701 $aMallet$b Rémi$01283280 701 $aMurat$b Daniel$01283281 701 $aNishikawa$b Yuko$0674920 701 $aOffen$b Karen$01021029 701 $aPascal$b Henri$0329772 701 $aRallo$b Élisabeth$0628612 701 $aRichard$b Éliane$0248907 701 $aThébaud$b Françoise$0416799 701 $aVerjus$b Anne$0522429 701 $aVissière$b Isabelle$0460247 701 $aBernos$b Marcel$01238345 701 $aBitton$b Michèle$01238346 801 0$bFR-FrMaCLE 906 $aBOOK 912 $a9910214928203321 996 $aFemmes Familles Filiations$93019096 997 $aUNINA LEADER 04149nam 2200673 450 001 9910788741903321 005 20180613001307.0 010 $a1-4704-0456-7 035 $a(CKB)3360000000465036 035 $a(EBL)3114130 035 $a(SSID)ssj0000889258 035 $a(PQKBManifestationID)11549052 035 $a(PQKBTitleCode)TC0000889258 035 $a(PQKBWorkID)10876591 035 $a(PQKB)10991109 035 $a(MiAaPQ)EBC3114130 035 $a(RPAM)14226138 035 $a(PPN)195417402 035 $a(EXLCZ)993360000000465036 100 $a20060111h20062006 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aTangential boundary stabilization of Navier-Stokes equations /$fViorel Barbu, Irena Lasiecka, Roberto Triggiani 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[2006] 210 4$d©2006 215 $a1 online resource (146 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vnumber 852 300 $a"Volume 181, number 852 (first of 5 numbers)." 311 $a0-8218-3874-1 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Acknowledgements""; ""Chapter 1. Introduction""; ""Chapter 2. Main results""; ""Chapter 3. Proof of Theorems 2.1 and 2.2 on the linearized system ( 2.4): d = 3""; ""3.1. Abstract models of the linearized problem ( 2.3). Regularity ""; ""3.2. The operator D*A, D*:Ha???(L[sup(2)](T))[sub(D)]""; ""3.3. A critical boundary property related to the boundary c.c. in ( 3.1.2e) ""; ""3.4. Some technical preliminaries; space and system decomposition "" 327 $a""3.5. Theorem 2.1, general case d = 3: An infinite-dimensional opena???loop boundary controller g satisfying the FCC (3.1.22)a???(3.1.24) for the linearized systema???""""3.6. Feedback stabilization of the unstable [sub(Z)]Na???system ( 3.4.9) on Z[sup(u)][sub(N)] under the FDSA""; ""3.7. Theorem 2.2, case d = 3 under the FDSA: An opena???loop boundary controller g satisfying the FCC ( 3.1.22)a???( 3.1.24) for the linearized systema???"" 327 $a""Chapter 4. Boundary feedback uniform stabilization of the linearized system( 3.1.4) via an optimal control problem and corresponding Riccati theory. Case d = 3""""4.0. Orientation""; ""4.1. The optimal control problem ( Case d = 3)""; ""4.2. Optimal feedback dynamics: the feedback semigroup and its generator on W""; ""4.3. Feedback synthesis via the Riccati operator""; ""4.4. Identification of the Riccati operator R in ( 4.1.8) with the operator R[sub(1)] in ( 4.3.1)"" 327 $a""4.5. A Riccatia???type algebraic equation satisfied by the operator R on the domain D(A[sup2)][Sub(R)], Where A[sub(R)] is the feedback generator""""Chapter 5. Theorem 2.3(i): Wella???posedness of the Naviera???Stokes equations with Riccatia???based boundary feedback control. Case d = 3 ""; ""Chapter 6. Theorem 2.3(ii): Local uniform stability of the Naviera???Stokes equations with Riccatia???based boundary feedback control""; ""Chapter 7. A PDEa???interpretation of the abstract results in Sections 5 and 6""; ""Appendix A. Technical Material Complementing Section 3.1"" 327 $a""B.3. Completion of the proof of Theorem 2.5 and Theorem 2.6 for the Na???S model (1.1), d = 2"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 852. 606 $aNavier-Stokes equations 606 $aBoundary layer 606 $aMathematical optimization 606 $aRiccati equation 615 0$aNavier-Stokes equations. 615 0$aBoundary layer. 615 0$aMathematical optimization. 615 0$aRiccati equation. 676 $a510 s 676 $a515/.353 700 $aBarbu$b Viorel$013745 702 $aLasiecka$b I$g(Irena),$f1948- 702 $aTriggiani$b R$g(Roberto),$f1942- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910788741903321 996 $aTangential boundary stabilization of Navier-Stokes equations$93838120 997 $aUNINA