LEADER 01212nam 2200421 450 001 9910164892803321 005 20230808202444.0 010 $a1-61312-943-2 035 $a(CKB)3820000000019561 035 $a(MiAaPQ)EBC4464147 035 $a(EXLCZ)993820000000019561 100 $a20160513h20162016 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aLayered $ebaking, building, and styling spectacular cakes /$fTessa Huff, founder of Style Sweet CA. ; editor Laura Dozier ; designer Deb Wood 210 1$aNew York, New York :$cStewart, Tabori & Chang,$d2016. 210 4$d©2016 215 $a1 online resource (425 pages) $ccolor illustrations, photographs 300 $aIncludes index. 311 $a1-61769-188-7 606 $aCake 606 $aCake decorating 615 0$aCake. 615 0$aCake decorating. 676 $a641.8653 700 $aHuff$b Tessa$01247012 702 $aDozier$b Laura 702 $aWood$b Deb 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910164892803321 996 $aLayered$92891109 997 $aUNINA LEADER 03349nam 22006495 450 001 9910484512903321 005 20250609111935.0 010 $a9783540745877 010 $a3540745874 024 7 $a10.1007/978-3-540-74587-7 035 $a(CKB)1000000000437248 035 $a(SSID)ssj0000320689 035 $a(PQKBManifestationID)11283764 035 $a(PQKBTitleCode)TC0000320689 035 $a(PQKBWorkID)10249582 035 $a(PQKB)11558802 035 $a(DE-He213)978-3-540-74587-7 035 $a(MiAaPQ)EBC3062161 035 $a(MiAaPQ)EBC6283211 035 $a(PPN)123739659 035 $a(MiAaPQ)EBC336891 035 $a(EXLCZ)991000000000437248 100 $a20100301d2008 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aWeighted Littlewood-Paley Theory and Exponential-Square Integrability /$fby Michael Wilson 205 $a1st ed. 2008. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2008. 215 $a1 online resource (XIII, 227 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1924 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9783540745822 311 08$a3540745823 320 $aIncludes bibliographical references (pages [219]-221) and index. 327 $aSome Assumptions -- An Elementary Introduction -- Exponential Square -- Many Dimensions; Smoothing -- The Calderón Reproducing Formula I -- The Calderón Reproducing Formula II -- The Calderón Reproducing Formula III -- Schrödinger Operators -- Some Singular Integrals -- Orlicz Spaces -- Goodbye to Good-? -- A Fourier Multiplier Theorem -- Vector-Valued Inequalities -- Random Pointwise Errors. 330 $aLittlewood-Paley theory is an essential tool of Fourier analysis, with applications and connections to PDEs, signal processing, and probability. It extends some of the benefits of orthogonality to situations where orthogonality doesn?t really make sense. It does so by letting us control certain oscillatory infinite series of functions in terms of infinite series of non-negative functions. Beginning in the 1980s, it was discovered that this control could be made much sharper than was previously suspected. The present book tries to give a gentle, well-motivated introduction to those discoveries, the methods behind them, their consequences, and some of their applications. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1924 606 $aFourier analysis 606 $aDifferential equations, Partial 606 $aFourier Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12058 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 615 0$aFourier analysis. 615 0$aDifferential equations, Partial. 615 14$aFourier Analysis. 615 24$aPartial Differential Equations. 676 $a515.2433 700 $aWilson$b Michael$4aut$4http://id.loc.gov/vocabulary/relators/aut$0309333 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484512903321 996 $aWeighted Littlewood-Paley theory and exponential-square integrability$9230588 997 $aUNINA