LEADER 04995oam 2200505zu 450 001 9910164277803321 005 20210807002213.0 010 $a0-8031-5496-8 035 $a(CKB)3170000000044410 035 $a(SSID)ssj0001490249 035 $a(PQKBManifestationID)11850592 035 $a(PQKBTitleCode)TC0001490249 035 $a(PQKBWorkID)11476401 035 $a(PQKB)10261429 035 $a(NjHacI)993170000000044410 035 $a(EXLCZ)993170000000044410 100 $a20160829d2004 uy 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aProbabilistic Aspects of Life Prediction 210 31$a[Place of publication not identified]$cAmerican Society for Testing & Materials$d2004 215 $a1 online resource (viii, 276 pages) $cillustrations 225 1 $aASTM special technical publication ;$v1450 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-8031-3478-9 320 $aIncludes bibliographical references and index. 327 $aSection I: Probabilistic modeling -- Probabilistic life prediction isn't as easy as it looks / C. Annis -- Probabilistic fatigue : Computational simulation / C.C. Chamis and S.S. Pal The prediction of fatigue life distributions from the analysis of plain specimen data / D.P. Shepherd -- Modeling variability in service loading spectra / D.F. Socie and M.A. Pompetzki -- Section II: Material variability -- Probabilistic fracture toughness and fatigue crack growth estimation resulting from material uncertainties / B. Farahmand and F. Abdi -- Predicting fatigue life under spectrum loading in 2024-T3 aluminum using a measured initial flaw size distribution / E.A. Debartolo and B.M. Hillberry -- Extension of a microstructure-based fatigue crack growth model for predicting fatigue life variability / M.P. Enright AND K.S. Chan -- Scatter in fatigue crack growth rate in a directionally solidified nickel-base superalloy / S. Highsmith, Jr. and W.S. Johnson -- Mechanism-based variability in fatigue life of Ti-6Al-2Sn-4Zr-6Mo / S.K. Jha, J.M. Larsen, A.H. Rosenberger, and G.A. Hartman -- Predicting the reliability of ceramics under transient loads and temperatures with CARES/life / N.N. Nemeth, O.M. Jadaan, T. Palfi, and E.H. Baker -- Fatigue life variability prediction based on crack forming inclusions in a high strength alloy steel / P.S. Shame, B.M. Hillberry, and B.A. Craig -- Section III: Applications -- Preliminary results of the United States nuclear regulatory commissions pressurized thermal shock rule reevaluation project / T.L. Dickson, P.T. Williams, B.R. Bass, and M.T. Kirk -- Corrosion risk assessment of aircraft structures / M. Liao and J.P. Komorowski -- A software framework for probabilistic fatigue life assessment of gas turbine engine rotors / R. Craig Mcclung, M.P. Enright, H.R. Millwater, G.R. Leverant, and S.J. Hudak, Jr -- Application of probabilistic fracture mechanisms in structural design of magnet component parts operating under cyclic loads at cryogenic temperatures / M. Yatomi, A. Nyilas, A. Portone, C. Sborchia, N. Mitchell, and K. Nikbin -- A methodology for assessing fatigue crack growth in reliability of railroad tank cars / W. Zltao, M.A. Sutton, and J. Pena -- Effect of individual component life distribution on engine life prediction / E.V. Zaretsky, R.C. Hendricks, and S.M. Soditu. 330 $aAs fatigue and fracture mechanics approaches are used more often for determining the useful life and/or inspection intervals for complex structures, realization sets-in that all factors are not well known or characterized. Indeed, inherent scatter exists in initial material quality and in material performance. Furthermore, projections of component usage in determination of applied stresses are inexact at best and are subject to much discrepancy between projected and actual usage. Even the models for predicting life contain inherent sources of error based on assumptions and/or empirically fitted parameters. All of these factors need to be accounted for to determine a distribution of potential lives based on combination of the aforementioned variables, as well as other factors. The purpose of this symposium was to create a forum for assessment of the state-of-the-art in incorporating these uncertainties and inherent scatter into systematic probabilistic methods for conducting life assessment. 410 0$aASTM special technical publication ;$v1450. 606 $aFracture mechanics$vCongresses 606 $aMaterials$xFatigue$vCongresses 615 0$aFracture mechanics 615 0$aMaterials$xFatigue 676 $a620.1/126 700 $aJohnson$b W. S$0366543 702 $aHillberry$b B. M 712 12$aSymposium on Probabilistic Aspects of Life Prediction$f(2002 :$eMiami, Fla.) 801 0$bPQKB 906 $aBOOK 912 $a9910164277803321 996 $aProbabilistic Aspects of Life Prediction$91932739 997 $aUNINA