LEADER 07109nam 22018135 450 001 9910163942603321 005 20230810001709.0 010 $a1-4008-8542-6 024 7 $a10.1515/9781400885428 035 $a(CKB)3710000001012298 035 $a(MiAaPQ)EBC4854432 035 $a(StDuBDS)EDZ0001756493 035 $a(DE-B1597)477784 035 $a(OCoLC)968415598 035 $a(OCoLC)979595921 035 $a(DE-B1597)9781400885428 035 $a(EXLCZ)993710000001012298 100 $a20190708d2017 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aHölder Continuous Euler Flows in Three Dimensions with Compact Support in Time /$fPhilip Isett 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2017] 210 4$d©2017 215 $a1 online resource (214 pages) 225 0 $aAnnals of Mathematics Studies ;$v357 300 $aPreviously issued in print: 2017. 311 $a0-691-17483-0 311 $a0-691-17482-2 320 $aIncludes bibliographical references and index. 327 $tFrontmatter -- $tContents -- $tPreface -- $tPart I. Introduction -- $tPart II. General Considerations of the Scheme -- $tPart III. Basic Construction of the Correction -- $tPart IV. Obtaining Solutions from the Construction -- $tPart V. Construction of Regular Weak Solutions: Preliminaries -- $tPart VI Construction of Regular Weak Solutions: Estimating the Correction -- $tPart VII. Construction of Regular Weak Solutions: Estimating the New Stress -- $tAcknowledgments -- $tAppendices -- $tReferences -- $tIndex 330 $aMotivated by the theory of turbulence in fluids, the physicist and chemist Lars Onsager conjectured in 1949 that weak solutions to the incompressible Euler equations might fail to conserve energy if their spatial regularity was below 1/3-Hölder. In this book, Philip Isett uses the method of convex integration to achieve the best-known results regarding nonuniqueness of solutions and Onsager's conjecture. Focusing on the intuition behind the method, the ideas introduced now play a pivotal role in the ongoing study of weak solutions to fluid dynamics equations.The construction itself-an intricate algorithm with hidden symmetries-mixes together transport equations, algebra, the method of nonstationary phase, underdetermined partial differential equations (PDEs), and specially designed high-frequency waves built using nonlinear phase functions. The powerful "Main Lemma"-used here to construct nonzero solutions with compact support in time and to prove nonuniqueness of solutions to the initial value problem-has been extended to a broad range of applications that are surveyed in the appendix. Appropriate for students and researchers studying nonlinear PDEs, this book aims to be as robust as possible and pinpoints the main difficulties that presently stand in the way of a full solution to Onsager's conjecture. 410 0$aAnnals of mathematics studies ;$vNumber 196. 606 $aFluid dynamics$xMathematics 610 $aBeltrami flows. 610 $aEinstein summation convention. 610 $aEuler equations. 610 $aEuler flow. 610 $aEuler-Reynolds equations. 610 $aEuler-Reynolds system. 610 $aGalilean invariance. 610 $aGalilean transformation. 610 $aHigh?igh Interference term. 610 $aHigh?igh term. 610 $aHigh?ow Interaction term. 610 $aHlder norm. 610 $aHlder regularity. 610 $aLars Onsager. 610 $aMain Lemma. 610 $aMain Theorem. 610 $aMollification term. 610 $aNewton's law. 610 $aNoether's theorem. 610 $aOnsager's conjecture. 610 $aReynolds stres. 610 $aReynolds stress. 610 $aStress equation. 610 $aStress term. 610 $aTransport equation. 610 $aTransport term. 610 $aTransport-Elliptic equation. 610 $aabstract index notation. 610 $aalgebra. 610 $aamplitude. 610 $acoarse scale flow. 610 $acoarse scale velocity. 610 $acoefficient. 610 $acommutator estimate. 610 $acommutator term. 610 $acommutator. 610 $aconservation of momentum. 610 $acontinuous solution. 610 $acontravariant tensor. 610 $aconvergence. 610 $aconvex integration. 610 $acorrection term. 610 $acorrection. 610 $acovariant tensor. 610 $adimensional analysis. 610 $adivergence equation. 610 $adivergence free vector field. 610 $adivergence operator. 610 $aenergy approximation. 610 $aenergy function. 610 $aenergy increment. 610 $aenergy regularity. 610 $aenergy variation. 610 $aenergy. 610 $aerror term. 610 $aerror. 610 $afinite time interval. 610 $afirst material derivative. 610 $afluid dynamics. 610 $afrequencies. 610 $afrequency energy levels. 610 $ah-principle. 610 $aintegral. 610 $alifespan parameter. 610 $alower indices. 610 $amaterial derivative. 610 $amollification. 610 $amollifier. 610 $amoment vanishing condition. 610 $amomentum. 610 $amulti-index. 610 $anon-negative function. 610 $anonzero solution. 610 $aoptimal regularity. 610 $aoscillatory factor. 610 $aoscillatory term. 610 $aparameters. 610 $aparametrix expansion. 610 $aparametrix. 610 $aphase direction. 610 $aphase function. 610 $aphase gradient. 610 $apressure correction. 610 $apressure. 610 $aregularity. 610 $arelative acceleration. 610 $arelative velocity. 610 $ascaling symmetry. 610 $asecond material derivative. 610 $asmooth function. 610 $asmooth stress tensor. 610 $asmooth vector field. 610 $aspatial derivative. 610 $astress. 610 $atensor. 610 $atheorem. 610 $atime cutoff function. 610 $atime derivative. 610 $atransport derivative. 610 $atransport equations. 610 $atransport estimate. 610 $atransport. 610 $aupper indices. 610 $avector amplitude. 610 $avelocity correction. 610 $avelocity field. 610 $avelocity. 610 $aweak limit. 610 $aweak solution. 615 0$aFluid dynamics$xMathematics. 676 $a532/.05 700 $aIsett$b Philip, $01223707 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910163942603321 996 $aHölder Continuous Euler Flows in Three Dimensions with Compact Support in Time$92839606 997 $aUNINA LEADER 02495nam 2200373z- 450 001 9910490721203321 005 20250326152204.0 035 $a(CKB)5590000000533371 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/71223 035 $a(EXLCZ)995590000000533371 100 $a20202107d2019 |y 0 101 0 $afre 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aLe choix de la violence en Suisse$eTémoignages 210 $aLausanne$cEditions Antipodes$d2019 225 1 $aHistoire 311 08$a9782889011575 311 08$a2889011577 330 $aLa Suisse a été régulièrement confrontée à des mobilisations violentes organisées par des mouvements de différentes tendances politiques. La seconde moitié du XXe siècle a été marquée par celles des séparatistes et des antiséparatistes jurassiens, de l?extrême gauche et de l?extrême droite. Durant la même période, le pays a également connu les activités violentes de mouvements provenant d?Allemagne, d?Italie et du Moyen Orient. On ne sait pas grand-chose de celles et de ceux qui ont pris pour cible les représentations bernoises, les symboles du capitalisme et de l?impérialisme, les immigrés ainsi que les centres de réfugiés. Pour la première fois, les actrices et les acteurs de ces mobilisations parlent de leurs vécus, de leurs représentations du monde, de leurs utopies et de leurs luttes. Avec ces entretiens, on découvre leur vie concrète, le sens de leur engagement, la diversité de leurs parcours, ce qui les a poussés à agir, parfois au mépris de leur vie et de celle des autres. Ce livre permet de les découvrir au-delà des représentations diabolisées (« le terroriste ») ou héroïsées (« le révolutionnaire ») que la mémoire collective a retenu d?elles et d?eux. Cet ouvrage éclaire l?histoire de la violence politique en Suisse, qui se situe à la croisée de parcours individuels et d?un contexte social et politique plus global. 517 $aChoix de la violence en Suisse 606 $aSociety & social sciences$2bicssc 610 $ahistoire orale 610 $ahistoire 610 $apolitique 610 $aviolence 615 7$aSociety & social sciences 700 $aVilliger$b Carole$4auth$01330562 906 $aBOOK 912 $a9910490721203321 996 $aLe choix de la violence en Suisse$93039903 997 $aUNINA