LEADER 03418nam 22007335 450 001 9910154752103321 005 20190708092533.0 010 $a1-4008-8188-9 024 7 $a10.1515/9781400881888 035 $a(CKB)3710000000620151 035 $a(MiAaPQ)EBC4738605 035 $a(DE-B1597)468003 035 $a(OCoLC)979633759 035 $a(DE-B1597)9781400881888 035 $a(EXLCZ)993710000000620151 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aInvariant Forms on Grassmann Manifolds. (AM-89), Volume 89 /$fWilhelm Stoll 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$d©1978 215 $a1 online resource (128 pages) 225 0 $aAnnals of Mathematics Studies ;$v252 311 $a0-691-08198-0 311 $a0-691-08199-9 320 $aIncludes bibliographical references and index. 327 $tFrontmatter -- $tCONTENTS -- $tPREFACE -- $tGERMAN LETTERS -- $tINTRODUCTION -- $t1. FLAG SPACES -- $t2. SCHUBERT VARIETIES -- $t3. CHERN FORMS -- $t4. THE THEOREM OF BOTT AND CHERN -- $t5. THE POINCARÉ DUAL OF A SCHUBERT VARIETY -- $t6. MATSUSHIMA'S THEOREM -- $t7. THE THEOREMS OF PIERI AND GIAMBELLI -- $tAPPENDIX -- $tREFERENCES -- $tINDEX -- $tBackmatter 330 $aThis work offers a contribution in the geometric form of the theory of several complex variables. Since complex Grassmann manifolds serve as classifying spaces of complex vector bundles, the cohomology structure of a complex Grassmann manifold is of importance for the construction of Chern classes of complex vector bundles. The cohomology ring of a Grassmannian is therefore of interest in topology, differential geometry, algebraic geometry, and complex analysis. Wilhelm Stoll treats certain aspects of the complex analysis point of view.This work originated with questions in value distribution theory. Here analytic sets and differential forms rather than the corresponding homology and cohomology classes are considered. On the Grassmann manifold, the cohomology ring is isomorphic to the ring of differential forms invariant under the unitary group, and each cohomology class is determined by a family of analytic sets. 410 0$aAnnals of mathematics studies ;$vNumber 89. 606 $aGrassmann manifolds 606 $aDifferential forms 606 $aInvariants 610 $aCalculation. 610 $aCohomology ring. 610 $aCohomology. 610 $aComplex space. 610 $aCotangent bundle. 610 $aDiagram (category theory). 610 $aExterior algebra. 610 $aGrassmannian. 610 $aHolomorphic vector bundle. 610 $aManifold. 610 $aRegular map (graph theory). 610 $aRemainder. 610 $aRepresentation theorem. 610 $aSchubert variety. 610 $aSesquilinear form. 610 $aTheorem. 610 $aVector bundle. 610 $aVector space. 615 0$aGrassmann manifolds. 615 0$aDifferential forms. 615 0$aInvariants. 676 $a514/.224 700 $aStoll$b Wilhelm, $0354798 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154752103321 996 $aInvariant Forms on Grassmann Manifolds. (AM-89), Volume 89$92788684 997 $aUNINA LEADER 00856nam0-22003011i-450 001 990003341000403321 005 20230314123954.0 035 $a000334100 035 $aFED01000334100 035 $a(Aleph)000334100FED01 035 $a000334100 100 $a20001010d1911----km-y0itay50------ba 101 0 $aeng 102 $aIT 105 $ay-------001yy 200 1 $aEnglish bookkeeping practice and commercial correspondence$fN. Spinelli 210 $aTorino$cS. Lattes e Co$d1911 215 $a184 p.$d20 cm 676 $a082.2 700 1$aSpinelli,$bNiccolò$0407993 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990003341000403321 952 $a082.2 SPI /1$bLINGUE B 050094$fDECLI 959 $aDECLI 996 $aEnglish bookkeeping practice and commercial correspondence$93046521 997 $aUNINA DB $aING01 LEADER 01535nam 2200481 450 001 9910162728303321 005 20230810001916.0 010 $a0-316-38049-0 010 $a0-316-38051-2 035 $a(CKB)3710000001043937 035 $a(MiAaPQ)EBC5363262 035 $a(MiAaPQ)EBC6925178 035 $a(Au-PeEL)EBL6925178 035 $a(EXLCZ)993710000001043937 100 $a20221029d2017 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe art of invisibility $ethe world's most famous hacker teaches you how to be safe in the age of Big Brother and big data /$fKevin Mitnick with Robert Vamosi ; foreword by Mikko Hypponen 210 1$aNew York, New York :$cLittle, Brown and Company,$d[2017] 210 4$d©2017 215 $a1 online resource (x, 309 pages) 311 $a0-316-38050-4 320 $aIncludes bibliographical references and index. 606 $aData protection 606 $aComputer security 606 $aInternet$xSecurity measures 615 0$aData protection. 615 0$aComputer security. 615 0$aInternet$xSecurity measures. 676 $a005.8 700 $aMitnick$b Kevin D$g(Kevin David),$f1963-$0618153 702 $aHypponen$b Mikko 702 $aVamosi$b Robert 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910162728303321 996 $aThe art of invisibility$92795660 997 $aUNINA