LEADER 01412nam 2200445 450 001 9910158974603321 005 20200520144314.0 010 $a1-68247-029-6 035 $a(CKB)3710000001018719 035 $a(MiAaPQ)EBC5333064 035 $a(Au-PeEL)EBL5333064 035 $a(CaPaEBR)ebr11536095 035 $a(OCoLC)1030819450 035 $a(EXLCZ)993710000001018719 100 $a20180502d2016 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTurnabout and deception $ecrafting the double-cross and the theory of outs /$fBarton Whaley ; edited by Susan Stratton Aykroyd 210 1$aAnnapolis, Maryland :$cNaval Institute Press,$d[2016] 215 $a1 online resource (266 pages) $cillustration 311 $a1-68247-028-8 517 3 $aCrafting the double-cross and the theory of outs 606 $aMilitary intelligence 606 $aDeception (Military science)$vCase studies 608 $aElectronic books. 615 0$aMilitary intelligence. 615 0$aDeception (Military science) 676 $a355.41 700 $aWhaley$b Barton$0857540 702 $aAykroyd$b Susan Stratton 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910158974603321 996 $aTurnabout and deception$92099269 997 $aUNINA LEADER 00922nas 2200277-a 450 001 996198734703316 005 20240413030709.0 035 $a(CKB)991042752570630 035 $a(CONSER)sn-96036993- 035 $a(EXLCZ)99991042752570630 100 $a19961113a199u9999 --- - 101 0 $aspa 200 00$aAmnistía Internacional $erevista bimestral para los paises de habla hispana 210 $aMadrid, España $cEditorial Amnistía Internacional 215 $a1 online resource 311 08$aPrint version: Amnistía Internacional : 1023-8328 (DLC)sn-96036993- (OCoLC)35907806 606 $aHuman rights$vPeriodicals 606 $aPolitical prisoners$vPeriodicals 615 0$aHuman rights 615 0$aPolitical prisoners 712 02$aAmnesty International. 906 $aJOURNAL 912 $a996198734703316 920 $aexl_impl conversion 996 $aAmnistía Internacional$92578609 997 $aUNISA LEADER 01449nam0 22003373i 450 001 CFI0197723 005 20251003044133.0 010 $a8814024642 100 $a20190402d1991 ||||0itac50 ba 101 | $aita 102 $ait 181 1$6z01$ai $bxxxe 182 1$6z01$an 183 1$6z01$anc$2RDAcarrier 200 1 $aAssicurazione obbligatoria e responsabilità civile 210 $aMilano$cA. Giuffrè$d1991 215 $aVI, 159 p.$d24 cm 225 | $aPubblicazioni della Facoltà di giurisprudenza della Università di Pisa$v113 300 $aAtti di un convegno tenuto a Lucca nel 1989. 410 0$1001CFI0014548$12001 $aPubblicazioni della Facoltà di giurisprudenza della Università di Pisa$v113$171201$aUniversità di Pisa$b : Facoltà di giurisprudenza$3CFIV008787 606 $aAssicurazioni di responsabilità civile autoveicoli$2FIR$3CFIC095634$9I 676 $a346$9Diritto privato$v12 676 $a346.45086572$9DIRITTO DELLE ASSICURAZIONI di responsabilita civile per autoveicoli. Italia$v21 801 3$aIT$bIT-000000$c20190402 850 $aIT-BN0095 901 $bNAP 01$cD $n$ 912 $aCFI0197723 950 0$aBiblioteca Centralizzata di Ateneo$c1 v.$d 01D (AR) 7 100$e 01AR 0070071005 VMA 1 v.$fY $h20150420$i20150420 977 $a 01 996 $aAssicurazione obbligatoria e responsabilità civile$962846 997 $aUNISANNIO LEADER 08688nam 22007575 450 001 9910751383603321 005 20251008145222.0 010 $a9783031389498 010 $a3031389492 024 7 $a10.1007/978-3-031-38949-8 035 $a(MiAaPQ)EBC30784285 035 $a(Au-PeEL)EBL30784285 035 $a(OCoLC)1402816722 035 $a(DE-He213)978-3-031-38949-8 035 $a(PPN)272914665 035 $a(CKB)28493174200041 035 $a(EXLCZ)9928493174200041 100 $a20231011d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMagnetic Resonance Brain Imaging $eModelling and Data Analysis Using R /$fby Jörg Polzehl, Karsten Tabelow 205 $a2nd ed. 2023. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2023. 215 $a1 online resource (268 pages) 225 1 $aUse R!,$x2197-5744 311 08$aPrint version: Polzehl, Jörg Magnetic Resonance Brain Imaging Cham : Springer International Publishing AG,c2023 9783031389481 327 $aIntro -- Preface to the Second Edition -- Preface to First Edition -- Contents -- Acronyms -- 1 Introduction -- 2 Magnetic Resonance Imaging in a Nutshell -- 2.1 The Principles of Magnetic Resonance Imaging -- 2.1.1 The Zeeman effect for Atomic Nuclei -- 2.1.2 Macroscopic Magnetization Vector -- 2.1.3 Spin Excitation and Relaxation -- 2.1.4 Spatial Localization and Pulse Sequences -- 2.1.5 MR Image Formation and Parallel Imaging -- 2.2 Special MR Imaging Modalities -- 2.2.1 Functional Magnetic Resonance Imaging (fMRI) -- 2.2.2 Diffusion Weighted Magnetic Resonance Imaging(dMRI) -- 2.2.3 Multi-parameter Mapping (MPM) -- 2.2.4 Inversion Recovery Magnetic Resonance Imaging (IR-MRI) -- 3 Medical Imaging Data Formats -- 3.1 DICOM Format -- 3.2 ANALYZE and NIfTI format -- 3.3 The BIDS Standard for Neuroimaging Data -- 4 Functional Magnetic Resonance Imaging -- 4.1 Prerequisites for Running the Code in This Chapter -- 4.2 Pre-processing fMRI Data -- 4.2.1 Example Data -- Functional MRI Data on Visual Object Recognition (ds000105) -- Multi-subject and Multi-modal Neuroimaging Dataset on Face Processing (ds000117) -- Multi-modal Longitudinal Study of a Single Subject (ds000031) -- 4.2.2 Slice Time Correction -- 4.2.3 Motion Correction -- 4.2.4 Registration -- 4.2.5 Normalization -- 4.2.6 Brain Mask -- 4.2.7 Brain Tissue Segmentation -- 4.2.8 Using Brain Atlas Information -- 4.2.9 Spatial Smoothing -- 4.3 The General Linear Model (GLM) for fMRI -- 4.3.1 Modeling the BOLD Signal -- 4.3.2 The Linear Model -- 4.3.3 Simulated fMRI Data -- 4.4 Signal Detection in Single-Subject Experiments -- 4.4.1 Voxelwise Signal Detection and the Multiple Comparison Problem -- 4.4.2 Bonferroni Correction -- 4.4.3 Random Field Theory -- 4.4.4 False Discovery Rate (FDR) -- 4.4.5 Cluster Thresholds -- 4.4.6 Permutation Tests -- 4.5 Adaptive Smoothing in fMRI. 327 $a4.5.1 Analyzing fMRI Experiments with Structural Adaptive Smoothing Procedures -- 4.5.2 Structural Adaptive Segmentation in fMRI -- 4.6 Other Approaches for fMRI Analysis Using R -- 4.6.1 Multivariate fMRI Analysis -- 4.6.2 Independent Component Analysis (ICA) -- 4.7 Functional Connectivity for Resting-State fMRI -- 5 Diffusion-Weighted Imaging -- 5.1 Prerequisites -- 5.2 Diffusion-Weighted MRI Data -- 5.2.1 The Diffusion Equation and MRI -- 5.2.2 Example Data -- 5.2.3 Data Pre-processing -- 5.2.4 Reading Pre-processed Data -- 5.2.5 Basic Data Properties -- 5.2.6 Definition of a Brain Mask -- 5.2.7 Characterization of Noise in Diffusion-Weighted MRI -- 5.3 Modeling Diffusion-Weighted MRI Data -- 5.3.1 The Apparent Diffusion Coefficient (ADC) -- 5.3.2 Diffusion Tensor Imaging (DTI) -- 5.3.3 Diffusion Kurtosis Imaging (DKI) -- 5.3.4 The Orientation Distribution Function -- 5.3.5 Tensor Mixture Models -- 5.4 Smoothing Diffusion-Weighted Data -- 5.4.1 Effects of Gaussian Filtering -- 5.4.2 Multi-shell Position-Orientation Adaptive Smoothing (msPOAS) -- 5.5 Fiber Tracking Methods -- 5.6 Structural Connectivity -- 6 Multiparameter Mapping -- 6.1 Prerequisites -- 6.2 Multiparameter Mapping -- 6.2.1 Signal Model in FLASH Sequences -- 6.2.2 Data from the Multiparameter Mapping (MPM) Protocol -- 6.2.3 Reparameterization of the Signal Model by ESTATICS -- 6.2.4 Correction for Instrumental B1-Bias -- 6.2.5 Correction for the Bias Induced by Low SNR -- 6.2.6 Structural Adaptive Smoothing of Relaxometry Data -- 7 Inversion Recovery Magnetic Resonance Imaging -- 7.1 Prerequisites -- 7.2 Tissue Porosity Estimation by Inversion Recovery MRI-based Experiments -- 7.3 Generating a Simulated Dataset -- 7.4 Estimation of Parameters from IR MRI Data in a Mixture Model -- A Smoothing Techniques for Imaging Problems -- A.1 Non-parametric Regression -- A.1.1 Kernel Smoothing. 327 $aA.2 Adaptive Weigths Smoothing -- A.2.1 Local Constant Likelihood Models -- A.2.2 Patch-Wise Adaptive Weights Smoothing (PAWS) -- A.3 Special Settings in Neuroimaging Experiments -- A.3.1 Simultaneous Mean and Variance Estimation -- A.3.2 Vector Valued Data -- A.3.3 Diffusion Data -- A.3.4 Tensor-Valued Data -- A.3.5 Model-Driven Smoothing of Observed Images -- B Resources for Neuroimaging in R -- B.1 An Overview on Selected R Packages for Neuroimaging -- B.2 Open Neuroimaging Data Archives -- C Data, Software and Hardware Resources -- C.1 How to Get the Example Code -- C.2 Packages and Software to Install -- C.3 How to Acquire and Organize the Example Data -- C.3.1 Data from the `Kirby21' Reproducibility Study -- C.3.2 Data from OpenNeuro -- C.3.3 DICOM Example Data -- C.3.4 MPM Data Example -- C.3.5 Atlas Data -- C.4 How to Obtain Precomputed Results -- C.5 System Requirements -- References -- Index. 330 $aThis book discusses modelling and analysis of Magnetic Resonance Imaging (MRI) data of the human brain. For the data processing pipelines we rely on R, the software environment for statistical computing and graphics. The book is intended for readers from two communities: Statisticians, who are interested in neuroimaging and look for an introduction to the acquired data and typical scientific problems in the field and neuroimaging students, who want to learn about the statistical modeling and analysis of MRI data. Being a practical introduction, the book focuses on those problems in data analysis for which implementations within R are available. By providing full worked-out examples the book thus serves as a tutorial for MRI analysis with R, from which the reader can derive its own data processing scripts. The book starts with a short introduction into MRI. The next chapter considers the process of reading and writing common neuroimaging data formats to and from the Rsession. The main chapters then cover four common MR imaging modalities and their data modeling and analysis problems: functional MRI, diffusion MRI, Multi-Parameter Mapping and Inversion Recovery MRI. The book concludes with extended Appendices on details of the utilize non-parametric statistics and on resources for R and MRI data. The book also addresses the issues of reproducibility and topics like data organization and description, open data and open science. It completely relies on a dynamic report generation with knitr: The books R-code and intermediate results are available for reproducibility of the examples. 410 0$aUse R!,$x2197-5744 606 $aBiometry 606 $aRadiology 606 $aImage processing$xDigital techniques 606 $aComputer vision 606 $aMathematical statistics$xData processing 606 $aSignal processing 606 $aBiostatistics 606 $aRadiology 606 $aComputer Imaging, Vision, Pattern Recognition and Graphics 606 $aStatistics and Computing 606 $aSignal, Speech and Image Processing 615 0$aBiometry. 615 0$aRadiology. 615 0$aImage processing$xDigital techniques. 615 0$aComputer vision. 615 0$aMathematical statistics$xData processing. 615 0$aSignal processing. 615 14$aBiostatistics. 615 24$aRadiology. 615 24$aComputer Imaging, Vision, Pattern Recognition and Graphics. 615 24$aStatistics and Computing. 615 24$aSignal, Speech and Image Processing. 676 $a616.8047548 700 $aPolzehl$b Jörg$0781365 701 $aTabelow$b Karsten$0781366 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910751383603321 996 $aMagnetic Resonance Brain Imaging$91732554 997 $aUNINA