LEADER 00911nam0-2200301---450- 001 990010006090403321 005 20151016115208.0 010 $a978-88-201-2662-9 035 $a001000609 035 $aFED01001000609 035 $a(Aleph)001000609FED01 035 $a001000609 100 $a20151016d2014----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay-------001yy 200 1 $aDidattica dell'italiano come lingua seconda e straniera$fPaolo E. Balboni 210 $aTorino$cLoescher$d2014 215 $a192 p.$d24 cm 225 1 $aLingua e lingue$fa cura di Paolo E Balboni e Marco Mezzadri$v1 700 1$aBalboni,$bPaolo E.$f<1948- >$0167608 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990010006090403321 952 $aB B 62$bs. i.$fNAP12 959 $aNAP12 996 $aDidattica dell'italiano come lingua seconda e straniera$91495910 997 $aUNINA LEADER 03023nam 22004935 450 001 9910158670503321 005 20251116170917.0 010 $a9783658168124 024 7 $a10.1007/978-3-658-16812-4 035 $a(CKB)3710000001009154 035 $a(DE-He213)978-3-658-16812-4 035 $a(MiAaPQ)EBC4776566 035 $a(PPN)19834001X 035 $a(EXLCZ)993710000001009154 100 $a20170104d2016 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGeneralized network improvement and packing problems /$fby Michael Holzhauser 205 $a1st ed. 2016. 210 1$aWiesbaden :$cSpringer Fachmedien Wiesbaden :$cImprint: Springer Spektrum,$d2016. 215 $a1 online resource (XVI, 213 p. 26 illus.) 311 08$a3-658-16812-9 311 08$a3-658-16811-0 327 $aFractional Packing and Parametric Search Frameworks -- Budget-Constrained Minimum Cost Flows: The Continuous Case -- Budget-Constrained Minimum Cost Flows: The Discrete Case -- Generalized Processing Networks -- Convex Generalized Flows. 330 $aMichael Holzhauser discusses generalizations of well-known network flow and packing problems by additional or modified side constraints. By exploiting the inherent connection between the two problem classes, the author investigates the complexity and approximability of several novel network flow and packing problems and presents combinatorial solution and approximation algorithms. Contents Fractional Packing and Parametric Search Frameworks Budget-Constrained Minimum Cost Flows: The Continuous Case Budget-Constrained Minimum Cost Flows: The Discrete Case Generalized Processing Networks Convex Generalized Flows Target Groups Researchers and students in the fields of mathematics, computer science, and economics Practitioners in operations research and logistics The Author Dr. Michael Holzhauser studied computer science at the University of Kaiserslautern and is now a research fellow in the Optimization Research Group at the Department of Mathematics of the University of Kaiserslautern. 606 $aMathematical optimization 606 $aAlgorithms 606 $aDiscrete Optimization$3https://scigraph.springernature.com/ontologies/product-market-codes/M26040 606 $aAlgorithms$3https://scigraph.springernature.com/ontologies/product-market-codes/M14018 606 $aMathematics of Algorithmic Complexity$3https://scigraph.springernature.com/ontologies/product-market-codes/M13130 615 0$aMathematical optimization. 615 0$aAlgorithms. 615 14$aDiscrete Optimization. 615 24$aAlgorithms. 615 24$aMathematics of Algorithmic Complexity. 676 $a519.6 700 $aHolzhauser$b Michael$4aut$4http://id.loc.gov/vocabulary/relators/aut$0755926 906 $aBOOK 912 $a9910158670503321 996 $aGeneralized network improvement and packing problems$91523362 997 $aUNINA