LEADER 00950nam 2200337 450 001 9910155665403321 005 20230807213124.0 010 $a1-77667-325-5 035 $a(CKB)3710000000976882 035 $a(MiAaPQ)EBC4771502 035 $a(UtSlPG)24126 035 $a(EXLCZ)993710000000976882 100 $a20170106h20152015 uy| 1 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aMaw's vacation $ethe story of a human being in the Yellowstone /$fEmerson Hough 210 1$a[Auckland] :$cThe Floating Press,$d[2015] 210 4$dİ2015 215 $a1 online resource (40 pages) 607 $aYellowstone National Park$vFiction 700 $aHough$b Emerson$f1857-1923,$0976109 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910155665403321 996 $aMaw's vacation$92593260 997 $aUNINA LEADER 03107nam 22004695 450 001 9910254097503321 005 20220413215117.0 010 $a3-319-30180-2 024 7 $a10.1007/978-3-319-30180-8 035 $a(CKB)3710000000734700 035 $a(DE-He213)978-3-319-30180-8 035 $a(MiAaPQ)EBC4561877 035 $a(PPN)194380890 035 $a(EXLCZ)993710000000734700 100 $a20160620d2016 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aInfinite matrices and their recent applications /$fby P.N. Shivakumar, K.C. Sivakumar, Yang Zhang 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (X, 118 p.) 311 $a3-319-30179-9 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Finite Matrices and their Nonsingularity -- Infinite Linear Equations -- Generalized Inverses: Real or Complex Field -- Generalized Inverses: Quaternions -- M-matrices over Infinite Dimensional Spaces -- Infinite Linear Programming -- Applications. . 330 $aThis monograph covers the theory of finite and infinite matrices over the fields of real numbers, complex numbers and over quaternions. Emphasizing topics such as sections or truncations and their relationship to the linear operator theory on certain specific separable and sequence spaces, the authors explore techniques like conformal mapping, iterations and truncations that are used to derive precise estimates in some cases and explicit lower and upper bounds for solutions in the other cases. Most of the matrices considered in this monograph have typically special structures like being diagonally dominated or tridiagonal, possess certain sign distributions and are frequently nonsingular. Such matrices arise, for instance, from solution methods for elliptic partial differential equations. The authors focus on both theoretical and computational aspects concerning infinite linear algebraic equations, differential systems and infinite linear programming, among others. Additionally, the authors cover topics such as Bessel?s and Mathieu?s equations, viscous fluid flow in doubly connected regions, digital circuit dynamics and eigenvalues of the Laplacian. 606 $aMatrix theory 606 $aAlgebra 606 $aLinear and Multilinear Algebras, Matrix Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M11094 615 0$aMatrix theory. 615 0$aAlgebra. 615 14$aLinear and Multilinear Algebras, Matrix Theory. 676 $a512.5 700 $aShivakumar$b P.N$4aut$4http://id.loc.gov/vocabulary/relators/aut$0351109 702 $aSivakumar$b K.C$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aZhang$b Yang$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910254097503321 996 $aInfinite Matrices and Their Recent Applications$92217887 997 $aUNINA