LEADER 03989nam 22006375 450 001 9910155277603321 005 20220330174018.0 010 $a3-319-46822-7 024 7 $a10.1007/978-3-319-46822-8 035 $a(CKB)4340000000024208 035 $a(DE-He213)978-3-319-46822-8 035 $a(MiAaPQ)EBC4765262 035 $a(PPN)197453961 035 $a(EXLCZ)994340000000024208 100 $a20161206d2016 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMod-? convergence $enormality zones and precise deviations /$fby Valentin Féray, Pierre-Loďc Méliot, Ashkan Nikeghbali 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (XII, 152 p. 17 illus., 9 illus. in color.) 225 1 $aSpringerBriefs in Probability and Mathematical Statistics,$x2365-4333 311 $a3-319-46821-9 320 $aIncludes bibliographical references. 327 $aPreface -- Introduction -- Preliminaries -- Fluctuations in the case of lattice distributions -- Fluctuations in the non-lattice case -- An extended deviation result from bounds on cumulants -- A precise version of the Ellis-Gärtner theorem -- Examples with an explicit generating function -- Mod-Gaussian convergence from a factorisation of the PGF -- Dependency graphs and mod-Gaussian convergence -- Subgraph count statistics in Erdös-Rényi random graphs -- Random character values from central measures on partitions -- Bibliography. 330 $aThe canonical way to establish the central limit theorem for i.i.d. random variables is to use characteristic functions and Lévy?s continuity theorem. This monograph focuses on this characteristic function approach and presents a renormalization theory called mod-? convergence. This type of convergence is a relatively new concept with many deep ramifications, and has not previously been published in a single accessible volume. The authors construct an extremely flexible framework using this concept in order to study limit theorems and large deviations for a number of probabilistic models related to classical probability, combinatorics, non-commutative random variables, as well as geometric and number-theoretical objects. Intended for researchers in probability theory, the text is carefully well-written and well-structured, containing a great amount of detail and interesting examples. . 410 0$aSpringerBriefs in Probability and Mathematical Statistics,$x2365-4333 606 $aProbabilities 606 $aNumber theory 606 $aCombinatorial analysis 606 $aMatrix theory 606 $aAlgebra 606 $aProbability Theory and Stochastic Processes$3https://scigraph.springernature.com/ontologies/product-market-codes/M27004 606 $aNumber Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M25001 606 $aCombinatorics$3https://scigraph.springernature.com/ontologies/product-market-codes/M29010 606 $aLinear and Multilinear Algebras, Matrix Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M11094 615 0$aProbabilities. 615 0$aNumber theory. 615 0$aCombinatorial analysis. 615 0$aMatrix theory. 615 0$aAlgebra. 615 14$aProbability Theory and Stochastic Processes. 615 24$aNumber Theory. 615 24$aCombinatorics. 615 24$aLinear and Multilinear Algebras, Matrix Theory. 676 $a519.2 700 $aFéray$b Valentin$4aut$4http://id.loc.gov/vocabulary/relators/aut$0755982 702 $aMéliot$b Pierre-Loďc$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aNikeghbali$b Ashkan$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910155277603321 996 $aMod-? Convergence$91964441 997 $aUNINA