LEADER 06922nam 22017535 450 001 9910154754803321 005 20220411150409.0 010 $a1-4008-8182-X 024 7 $a10.1515/9781400881826 035 $a(CKB)3710000000618929 035 $a(SSID)ssj0001651246 035 $a(PQKBManifestationID)16425776 035 $a(PQKBTitleCode)TC0001651246 035 $a(PQKBWorkID)12521333 035 $a(PQKB)10777132 035 $a(MiAaPQ)EBC4738801 035 $a(DE-B1597)467980 035 $a(OCoLC)979968794 035 $a(DE-B1597)9781400881826 035 $a(EXLCZ)993710000000618929 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCharacteristic Classes. (AM-76), Volume 76 /$fJohn Milnor, James D. Stasheff 210 1$aPrinceton, NJ :$cPrinceton University Press,$d[2016] 210 4$d©1974 215 $a1 online resource (339 pages) $cillustrations 225 0 $aAnnals of Mathematics Studies ;$v246 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-691-08122-0 320 $aIncludes bibliographical references and index. 327 $tFrontmatter --$tPreface --$tContents --$t§1. Smooth Manifolds --$t§2. Vector Bundles --$t§3. Constructing New Vector Bundles Out of Old --$t§4. Stiefel-Whitney Classes --$t§5. Grassmann Manifolds and Universal Bundles --$t§6. A Cell Structure for Grassmann Manifolds --$t§7. The Cohomology Ring H*(Gn; Z/2) --$t§8. Existence of Stiefel-Whitney Classes --$t§9. Oriented Bundles and the Euler Class --$t§10. The Thom Isomorphism Theorem --$t§11. Computations in a Smooth Manifold --$t§12. Obstructions --$t§13. Complex Vector Bundles and Complex Manifolds --$t§14. Chern Classes --$t§15. Pontrjagin Classes --$t§16. Chern Numbers and Pontrjagin Numbers --$t§17. The Oriented Cobordism Ring ?* --$t§18. Thom Spaces and Transversality --$t§19. Multiplicative Sequences and the Signature Theorem --$t§20. Combinatorial Pontrjagin Classes --$tEpilogue --$tAppendix A: Singular Homology and Cohomology --$tAppendix B: Bernoulli Numbers --$tAppendix C: Connections, Curvature, and Characteristic Classes --$tBibliography --$tIndex 330 $aThe theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds.In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers.Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected. 410 0$aAnnals of mathematics studies ;$vno. 76. 410 0$aPrinceton landmarks in mathematics and physics. 606 $aCharacteristic classes 610 $aAdditive group. 610 $aAxiom. 610 $aBasis (linear algebra). 610 $aBoundary (topology). 610 $aBundle map. 610 $aCW complex. 610 $aCanonical map. 610 $aCap product. 610 $aCartesian product. 610 $aCharacteristic class. 610 $aCharles Ehresmann. 610 $aChern class. 610 $aClassifying space. 610 $aCoefficient. 610 $aCohomology ring. 610 $aCohomology. 610 $aCompact space. 610 $aComplex dimension. 610 $aComplex manifold. 610 $aComplex vector bundle. 610 $aComplexification. 610 $aComputation. 610 $aConformal geometry. 610 $aContinuous function. 610 $aCoordinate space. 610 $aCross product. 610 $aDe Rham cohomology. 610 $aDiffeomorphism. 610 $aDifferentiable manifold. 610 $aDifferential form. 610 $aDifferential operator. 610 $aDimension (vector space). 610 $aDimension. 610 $aDirect sum. 610 $aDirectional derivative. 610 $aEilenberg?Steenrod axioms. 610 $aEmbedding. 610 $aEquivalence class. 610 $aEuler class. 610 $aEuler number. 610 $aExistence theorem. 610 $aExistential quantification. 610 $aExterior (topology). 610 $aFiber bundle. 610 $aFundamental class. 610 $aFundamental group. 610 $aGeneral linear group. 610 $aGrassmannian. 610 $aGysin sequence. 610 $aHausdorff space. 610 $aHomeomorphism. 610 $aHomology (mathematics). 610 $aHomotopy. 610 $aIdentity element. 610 $aInteger. 610 $aInterior (topology). 610 $aIsomorphism class. 610 $aJ-homomorphism. 610 $aK-theory. 610 $aLeibniz integral rule. 610 $aLevi-Civita connection. 610 $aLimit of a sequence. 610 $aLinear map. 610 $aMetric space. 610 $aNatural number. 610 $aNatural topology. 610 $aNeighbourhood (mathematics). 610 $aNormal bundle. 610 $aOpen set. 610 $aOrthogonal complement. 610 $aOrthogonal group. 610 $aOrthonormal basis. 610 $aPartition of unity. 610 $aPermutation. 610 $aPolynomial. 610 $aPower series. 610 $aPrincipal ideal domain. 610 $aProjection (mathematics). 610 $aRepresentation ring. 610 $aRiemannian manifold. 610 $aSequence. 610 $aSingular homology. 610 $aSmoothness. 610 $aSpecial case. 610 $aSteenrod algebra. 610 $aStiefel?Whitney class. 610 $aSubgroup. 610 $aSubset. 610 $aSymmetric function. 610 $aTangent bundle. 610 $aTensor product. 610 $aTheorem. 610 $aThom space. 610 $aTopological space. 610 $aTopology. 610 $aUnit disk. 610 $aUnit vector. 610 $aVariable (mathematics). 610 $aVector bundle. 610 $aVector space. 615 0$aCharacteristic classes. 676 $a514/.7 700 $aMilnor$b John$040532 702 $aStasheff$b James D. 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154754803321 996 $aCharacteristic Classes. (AM-76), Volume 76$92788043 997 $aUNINA