LEADER 05175nam 22013215 450 001 9910154754703321 005 20190708092533.0 010 $a1-4008-8250-8 024 7 $a10.1515/9781400882502 035 $a(CKB)3710000000618934 035 $a(SSID)ssj0001651286 035 $a(PQKBManifestationID)16426355 035 $a(PQKBTitleCode)TC0001651286 035 $a(PQKBWorkID)12346503 035 $a(PQKB)10549274 035 $a(MiAaPQ)EBC4738790 035 $a(DE-B1597)468032 035 $a(OCoLC)954123605 035 $a(OCoLC)990753639 035 $a(DE-B1597)9781400882502 035 $a(EXLCZ)993710000000618934 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHarmonic Maps and Minimal Immersions with Symmetries (AM-130), Volume 130 $eMethods of Ordinary Differential Equations Applied to Elliptic Variational Problems. (AM-130) /$fAndrea Ratto, James Eells 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$dİ1993 215 $a1 online resource (235 pages) $cillustrations 225 0 $aAnnals of Mathematics Studies ;$v312 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-691-10249-X 311 $a0-691-03321-8 320 $aIncludes bibliographical references and index. 327 $tFrontmatter -- $tINTRODUCTION -- $tTABLE OF CONTENTS -- $tPART 1. BASIC VARIATIONAL AND GEOMETRICAL PROPERTIES -- $tPART 2. G-INVARIANT MINIMAL AND CONSTANT MEAN CURVATURE IMMERSIONS -- $tPART 3. HARMONIC MAPS BETWEEN SPHERES -- $tAPPENDIX 1. SECOND VARIATIONS -- $tAPPENDIX 2. RIEMANNIAN IMMERSIONS Sm ? Sn -- $tAPPENDIX 3. MINIMAL GRAPHS AND PENDENT DROPS -- $tAPPENDIX 4. FURTHER ASPECTS OF PENDULUM TYPE EQUATIONS -- $tREFERENCES -- $tINDEX 330 $aThe aim of this book is to study harmonic maps, minimal and parallel mean curvature immersions in the presence of symmetry. In several instances, the latter permits reduction of the original elliptic variational problem to the qualitative study of certain ordinary differential equations: the authors' primary objective is to provide representative examples to illustrate these reduction methods and their associated analysis with geometric and topological applications. The material covered by the book displays a solid interplay involving geometry, analysis and topology: in particular, it includes a basic presentation of 1-cohomogeneous equivariant differential geometry and of the theory of harmonic maps between spheres. 410 0$aAnnals of mathematics studies ;$vno. 130. 606 $aHarmonic maps 606 $aImmersions (Mathematics) 606 $aDifferential equations, Elliptic$xNumerical solutions 610 $aArc length. 610 $aCatenary. 610 $aClifford algebra. 610 $aCodimension. 610 $aCoefficient. 610 $aCompact space. 610 $aComplex projective space. 610 $aConnected sum. 610 $aConstant curvature. 610 $aCorollary. 610 $aCovariant derivative. 610 $aCurvature. 610 $aCylinder (geometry). 610 $aDegeneracy (mathematics). 610 $aDiagram (category theory). 610 $aDifferential equation. 610 $aDifferential geometry. 610 $aElliptic partial differential equation. 610 $aEmbedding. 610 $aEnergy functional. 610 $aEquation. 610 $aExistence theorem. 610 $aExistential quantification. 610 $aFiber bundle. 610 $aGauss map. 610 $aGeometry and topology. 610 $aGeometry. 610 $aGravitational field. 610 $aHarmonic map. 610 $aHyperbola. 610 $aHyperplane. 610 $aHypersphere. 610 $aHypersurface. 610 $aInteger. 610 $aIterative method. 610 $aLevi-Civita connection. 610 $aLie group. 610 $aMathematics. 610 $aMaximum principle. 610 $aMean curvature. 610 $aNormal (geometry). 610 $aNumerical analysis. 610 $aOpen set. 610 $aOrdinary differential equation. 610 $aParabola. 610 $aQuadratic form. 610 $aSign (mathematics). 610 $aSpecial case. 610 $aStiefel manifold. 610 $aSubmanifold. 610 $aSuggestion. 610 $aSurface of revolution. 610 $aSymmetry. 610 $aTangent bundle. 610 $aTheorem. 610 $aVector bundle. 610 $aVector space. 610 $aVertical tangent. 610 $aWinding number. 615 0$aHarmonic maps. 615 0$aImmersions (Mathematics) 615 0$aDifferential equations, Elliptic$xNumerical solutions. 676 $a514/.7 700 $aEells$b James, $053435 702 $aRatto$b Andrea, 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154754703321 996 $aHarmonic Maps and Minimal Immersions with Symmetries (AM-130), Volume 130$92788800 997 $aUNINA LEADER 02297oam 2200529 450 001 9910793360103321 005 20191113110401.0 010 $a1-4166-2697-2 010 $a1-4166-2696-4 035 $a(OCoLC)1052903109 035 $a(MiFhGG)GVRL88QS 035 $a(EXLCZ)994100000007164510 100 $a20180731h20192019 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aWith the whole child in mind $einsights from the Comer school development program /$fLinda Darling-Hammond, Channa M. Cook-Harvey, Lisa Flook, Madelyn Gardner, Hanna Melnick 210 1$aAlexandria, VA, USA :$cASCD,$d[2019] 210 4$d?2019 215 $a1 online resource (ix, 131 pages) 225 0 $aGale eBooks 311 $a1-4166-2694-8 320 $aIncludes bibliographical references and index. 327 $aPlacing child development at the center -- The school development program : design and outcomes -- The school development program in action in New Jersey -- The school development program in action in New Haven -- Creating and sustaining developmentally grounded education. 330 $aThis book describes the Comer's School Development Program (SDP) six developmental pathways (cognitive, social, psychological, physical, linguistic, and ethical) and explains how the program's nine key components (in the form of mechanisms, operations, and guiding principles) create a comprehensive approach to educating children for successful outcomes. 606 $aSchool improvement programs$zUnited States 606 $aEducational change$zUnited States 606 $aChild development$zUnited States 606 $aCommunity and school$zUnited States 615 0$aSchool improvement programs 615 0$aEducational change 615 0$aChild development 615 0$aCommunity and school 676 $a371.207 700 $aDarling-Hammond$b Linda$f1951-$0469823 702 $aCook-Harvey$b Channa M. 702 $aFlook$b Lisa 702 $aGardner$b Madelyn 702 $aMelnick$b Hanna 801 0$bMiFhGG 801 1$bMiFhGG 906 $aBOOK 912 $a9910793360103321 996 $aWith the whole child in mind$93841043 997 $aUNINA