LEADER 04835nam 22013455 450 001 9910154753903321 005 20190708092533.0 010 $a1-4008-8148-X 024 7 $a10.1515/9781400881482 035 $a(CKB)3710000000620066 035 $a(SSID)ssj0001651268 035 $a(PQKBManifestationID)16425332 035 $a(PQKBTitleCode)TC0001651268 035 $a(PQKBWorkID)14692797 035 $a(PQKB)10264455 035 $a(MiAaPQ)EBC4738512 035 $a(DE-B1597)467954 035 $a(OCoLC)979911331 035 $a(DE-B1597)9781400881482 035 $a(EXLCZ)993710000000620066 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aEntire Holomorphic Mappings in One and Several Complex Variables. (AM-85), Volume 85 /$fPhillip A. Griffiths 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$d©1976 215 $a1 online resource (112 pages) $cillustrations 225 0 $aAnnals of Mathematics Studies ;$v230 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-691-08171-9 311 $a0-691-08172-7 320 $aIncludes bibliographical references. 327 $tFrontmatter -- $tTABLE OF CONTENTS -- $tINDEX OF NOTATIONS -- $tINTRODUCTION -- $tCHAPTER 1. ORDERS OF GROWTH -- $tCHAPTER 2. THE APPEARANCE OF CURVATURE -- $tCHAPTER 3. THE DEFECT RELATIONS -- $tBIBLIOGRAPHY -- $tBackmatter 330 $aThe present monograph grew out of the fifth set of Hermann Weyl Lectures, given by Professor Griffiths at the Institute for Advanced Study, Princeton, in fall 1974.In Chapter 1 the author discusses Emile Borel's proof and the classical Jensen theorem, order of growth of entire analytic sets, order functions for entire holomorphic mappings, classical indicators of orders of growth, and entire functions and varieties of finite order.Chapter 2 is devoted to the appearance of curvature, and Chapter 3 considers the defect relations. The author considers the lemma on the logarithmic derivative, R. Nevanlinna's proof of the defect relation, and refinements of the classical case. 410 0$aAnnals of mathematics studies ;$vNumber 85. 606 $aHolomorphic mappings 610 $aAlgebraic variety. 610 $aAnalytic function. 610 $aAnalytic set. 610 $aArmand Borel. 610 $aBig O notation. 610 $aCanonical bundle. 610 $aCartesian coordinate system. 610 $aCharacteristic function (probability theory). 610 $aCharacterization (mathematics). 610 $aChern class. 610 $aCompact Riemann surface. 610 $aCompact space. 610 $aComplex analysis. 610 $aComplex manifold. 610 $aComplex projective space. 610 $aCorollary. 610 $aCounting. 610 $aCurvature. 610 $aDegeneracy (mathematics). 610 $aDerivative. 610 $aDifferential form. 610 $aDimension. 610 $aDivisor. 610 $aElementary proof. 610 $aEntire function. 610 $aEquation. 610 $aExponential growth. 610 $aGaussian curvature. 610 $aHermann Weyl. 610 $aHodge theory. 610 $aHolomorphic function. 610 $aHyperplane. 610 $aHypersurface. 610 $aInfinite product. 610 $aIntegral geometry. 610 $aInvariant measure. 610 $aInverse problem. 610 $aJacobian matrix and determinant. 610 $aKähler manifold. 610 $aLine bundle. 610 $aLinear equation. 610 $aLogarithmic derivative. 610 $aManifold. 610 $aMeromorphic function. 610 $aModular form. 610 $aMonograph. 610 $aNevanlinna theory. 610 $aNonlinear system. 610 $aPhillip Griffiths. 610 $aPicard theorem. 610 $aPolynomial. 610 $aProjective space. 610 $aQ.E.D. 610 $aQuantity. 610 $aRicci curvature. 610 $aRiemann sphere. 610 $aScientific notation. 610 $aSeveral complex variables. 610 $aSpecial case. 610 $aStokes' theorem. 610 $aSubset. 610 $aSummation. 610 $aTheorem. 610 $aTheory. 610 $aUniformization theorem. 610 $aUnit square. 610 $aVolume form. 615 0$aHolomorphic mappings. 676 $a515/.9 700 $aGriffiths$b Phillip A., $057421 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154753903321 996 $aEntire Holomorphic Mappings in One and Several Complex Variables. (AM-85), Volume 85$92788315 997 $aUNINA LEADER 02234oam 2200589 450 001 9910707795003321 005 20161021144345.0 035 $a(CKB)5470000002466594 035 $a(OCoLC)655207088$z(OCoLC)885281789 035 $a(EXLCZ)995470000002466594 100 $a20100811d1977 ua 0 101 0 $aeng 135 $aurbn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPotential hazards from future eruptions of Mount St. Helens volcano, Washington /$fby Dwight R. Crandell and Donal R. Mullineaux 210 1$a[Washington, D.C.] :$cUnited States Department of the Interior, Geological Survey,$d1978. 210 2$aWashington :$cUnited States Government Printing Office. 215 $a1 online resource (vi, 26 pages, 2 pages of plates) $cillustrations, maps 225 1 $aGeological Survey bulletin ;$v1383-C 225 1 $aGeology of Mount St. Helens volcano, Washington 300 $aTitle from title screen (viewed October 21, 2016). 320 $aIncludes bibliographical references (pages 25-26). 606 $aNatural disasters$zWashington (State)$zSaint Helens, Mount 606 $aVolcanic hazard analysis$zWashington (State)$zSaint Helens, Mount 606 $aCatastrophes naturelles$zWashington (E?tat) 606 $aNatural disasters$2fast 606 $aVolcanic hazard analysis$2fast 607 $aSaint Helens, Mount (Wash.) 607 $aSaint Helens, Mont (Wash.) 607 $aWashington (State)$zMount Saint Helens$2fast 615 0$aNatural disasters 615 0$aVolcanic hazard analysis 615 6$aCatastrophes naturelles 615 7$aNatural disasters. 615 7$aVolcanic hazard analysis. 700 $aCrandell$b Dwight R$g(Dwight Raymond),$f1923-2009,$01354321 702 $aMullineaux$b Donal Ray$f1925- 712 02$aGeological Survey (U.S.), 801 0$bOCLCE 801 1$bOCLCE 801 2$bOCLCQ 801 2$bOCLCF 801 2$bOCLCO 801 2$bCOP 801 2$bOCLCQ 801 2$bGPO 906 $aBOOK 912 $a9910707795003321 996 $aPotential hazards from future eruptions of Mount St. Helens volcano, Washington$93487884 997 $aUNINA