LEADER 06445nam 22017775 450 001 9910154753103321 005 20190708092533.0 010 $a1-4008-8142-0 024 7 $a10.1515/9781400881420 035 $a(CKB)3710000000620137 035 $a(SSID)ssj0001651241 035 $a(PQKBManifestationID)16425329 035 $a(PQKBTitleCode)TC0001651241 035 $a(PQKBWorkID)14760847 035 $a(PQKB)10561351 035 $a(MiAaPQ)EBC4738770 035 $a(DE-B1597)467928 035 $a(OCoLC)979633634 035 $a(DE-B1597)9781400881420 035 $a(EXLCZ)993710000000620137 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aBraids, Links, and Mapping Class Groups. (AM-82), Volume 82 /$fJoan S. Birman 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$dİ1975 215 $a1 online resource (241 pages) $cillustrations 225 0 $aAnnals of Mathematics Studies ;$v238 300 $aIncludes index. 311 $a0-691-08149-2 320 $aIncludes bibliographical references and index. 327 $tFrontmatter -- $tPREFACE -- $tTABLE OF CONTENTS -- $tCHAPTER 1. BRAID GROUPS -- $tCHAPTER 2. BRAIDS AND LINKS -- $tCHAPTER 3. MAGNUS REPRESENTATIONS -- $tCHAPTER 4. MAPPING CLASS GROUPS -- $tCHAPTER 5. PLATS AND LINKS -- $tAPPENDIX: RESEARCH PROBLEMS -- $tBIBLIOGRAPHY -- $tINDEX -- $tBackmatter 330 $aThe central theme of this study is Artin's braid group and the many ways that the notion of a braid has proved to be important in low-dimensional topology.In Chapter 1 the author is concerned with the concept of a braid as a group of motions of points in a manifold. She studies structural and algebraic properties of the braid groups of two manifolds, and derives systems of defining relations for the braid groups of the plane and sphere. In Chapter 2 she focuses on the connections between the classical braid group and the classical knot problem. After reviewing basic results she proceeds to an exploration of some possible implications of the Garside and Markov theorems.Chapter 3 offers discussion of matrix representations of the free group and of subgroups of the automorphism group of the free group. These ideas come to a focus in the difficult open question of whether Burau's matrix representation of the braid group is faithful. Chapter 4 is a broad view of recent results on the connections between braid groups and mapping class groups of surfaces. Chapter 5 contains a brief discussion of the theory of "plats." Research problems are included in an appendix. 410 0$aAnnals of mathematics studies ;$vno. 82. 606 $aBraid theory 606 $aKnot theory 606 $aRepresentations of groups 610 $aAddition. 610 $aAlexander polynomial. 610 $aAlgebraic structure. 610 $aAutomorphism. 610 $aBall (mathematics). 610 $aBijection. 610 $aBraid group. 610 $aBraid theory. 610 $aBranched covering. 610 $aBurau representation. 610 $aCalculation. 610 $aCartesian coordinate system. 610 $aCharacterization (mathematics). 610 $aCoefficient. 610 $aCombinatorial group theory. 610 $aCommutative property. 610 $aCommutator subgroup. 610 $aConfiguration space. 610 $aConjugacy class. 610 $aCorollary. 610 $aCovering space. 610 $aDehn twist. 610 $aDeterminant. 610 $aDiagram (category theory). 610 $aDimension. 610 $aDisjoint union. 610 $aDouble coset. 610 $aEigenvalues and eigenvectors. 610 $aEnumeration. 610 $aEquation. 610 $aEquivalence class. 610 $aExact sequence. 610 $aExistential quantification. 610 $aFaithful representation. 610 $aFinite set. 610 $aFree abelian group. 610 $aFree group. 610 $aFundamental group. 610 $aGeometry. 610 $aGroup (mathematics). 610 $aGroup ring. 610 $aGroupoid. 610 $aHandlebody. 610 $aHeegaard splitting. 610 $aHomeomorphism. 610 $aHomomorphism. 610 $aHomotopy group. 610 $aHomotopy. 610 $aIdentity element. 610 $aIdentity matrix. 610 $aInclusion map. 610 $aInitial point. 610 $aInteger matrix. 610 $aInteger. 610 $aKnot polynomial. 610 $aKnot theory. 610 $aLens space. 610 $aLine segment. 610 $aLine?line intersection. 610 $aLink group. 610 $aLow-dimensional topology. 610 $aMapping class group. 610 $aMathematical induction. 610 $aMathematics. 610 $aMatrix group. 610 $aMatrix representation. 610 $aMonograph. 610 $aMorphism. 610 $aNatural transformation. 610 $aNormal matrix. 610 $aNotation. 610 $aOrientability. 610 $aParity (mathematics). 610 $aPermutation. 610 $aPiecewise linear. 610 $aPointwise. 610 $aPolynomial. 610 $aPrime knot. 610 $aProjection (mathematics). 610 $aProportionality (mathematics). 610 $aQuotient group. 610 $aRequirement. 610 $aRewriting. 610 $aRiemann surface. 610 $aSemigroup. 610 $aSequence. 610 $aSpecial case. 610 $aSubgroup. 610 $aSubmanifold. 610 $aSubset. 610 $aSymmetric group. 610 $aTheorem. 610 $aTheory. 610 $aTopology. 610 $aTrefoil knot. 610 $aTwo-dimensional space. 610 $aUnimodular matrix. 610 $aUnit vector. 610 $aVariable (mathematics). 610 $aWord problem (mathematics). 615 0$aBraid theory. 615 0$aKnot theory. 615 0$aRepresentations of groups. 676 $a514/.224 700 $aBirman$b Joan S., $0344665 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154753103321 996 $aBraids, Links, and Mapping Class Groups. (AM-82), Volume 82$92788037 997 $aUNINA