LEADER 01414nam2-2200409---450- 001 990002973870203316 005 20070917134258.0 010 $a1-84171-609-X 035 $a000297387 035 $aUSA01000297387 035 $a(ALEPH)000297387USA01 035 $a000297387 100 $a20070917d2004----km-y0itay50------ba 101 0 $aeng 102 $aGB 105 $aa|||z|||001yy 200 1 $a<> significance of votive offerings in selected Hera sanctuaries in the Peloponnese, Ionia, and Western Greece$fJens David Baumbach 210 $aOxford$cArchaeopress$d2004 215 $aXV, 212 p.$cill.$d30 cm. 225 2 $aBAR international series$v1249$1001000018484$12001 410 0$12001$aBAR international series$v1249 454 1$12001 461 1$1001-------$12001 606 0 $aEra $xCulto 676 $a292.37 700 1$aBAUMBACH,$bJens David$0598289 801 0$aIT$bsalbc$gISBD 912 $a990002973870203316 951 $aXI.5. Coll. 12/ 310$b200241 L.M.$cXI.5. Coll.$d00160697 959 $aBK 969 $aUMA 979 $aRIVELLI$b90$c20070917$lUSA01$h1336 979 $aRIVELLI$b90$c20070917$lUSA01$h1339 979 $aRIVELLI$b90$c20070917$lUSA01$h1342 979 $aCHIARA$b90$c20160208$lUSA01$h1405 996 $aSignificance of votive offerings in selected Hera sanctuaries in the Peloponnese, Ionia, and Western Greece$91027736 997 $aUNISA LEADER 05992nam 22017175 450 001 9910154752203321 005 20220302152038.0 010 $a1-4008-8179-X 024 7 $a10.1515/9781400881796 035 $a(OCoLC)945482788 035 $a(DE-B1597)467965 035 $a(OCoLC)979743245 035 $a(DE-B1597)9781400881796 035 $a(MiAaPQ)EBC4738586 035 $a(CKB)3710000000620150 035 $a(EXLCZ)993710000000620150 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIntroduction to Algebraic K-Theory. (AM-72), Volume 72 /$fJohn Milnor 210 1$aPrinceton, NJ :$cPrinceton University Press,$d[2016] 210 4$d©1972 215 $a1 online resource (200 pages) 225 0 $aAnnals of Mathematics Studies ;$v243 300 $aIncludes index. 311 $a0-691-08101-8 327 $tFrontmatter --$tPreface and Guide to the Literature --$tContents --$t§1. Projective Modules and K0? --$t§2 . Constructing Projective Modules --$t§3. The Whitehead Group K1? --$t§4. The Exact Sequence Associated with an Ideal --$t§5. Steinberg Groups and the Functor K2 --$t§6. Extending the Exact Sequences --$t§7. The Case of a Commutative Banach Algebra --$t§8. The Product K1? ? K1? K2? --$t§9. Computations in the Steinberg Group --$t§10. Computation of K2Z --$t§11. Matsumoto's Computation of K2 of a Field --$t12. Proof of Matsumoto's Theorem --$t§13. More about Dedekind Domains --$t§14. The Transfer Homomorphism --$t§15. Power Norm Residue Symbols --$t§16. Number Fields --$tAppendix. Continuous Steinberg Symbols --$tIndex 330 $aAlgebraic K-theory describes a branch of algebra that centers about two functors. K0 and K1, which assign to each associative ring ? an abelian group K0? or K1? respectively. Professor Milnor sets out, in the present work, to define and study an analogous functor K2, also from associative rings to abelian groups. Just as functors K0 and K1 are important to geometric topologists, K2 is now considered to have similar topological applications. The exposition includes, besides K-theory, a considerable amount of related arithmetic. 410 0$aAnnals of mathematics studies ;$vNumber 72. 606 $aAssociative rings 606 $aAbelian groups 606 $aFunctor theory 610 $aAbelian group. 610 $aAbsolute value. 610 $aAddition. 610 $aAlgebraic K-theory. 610 $aAlgebraic equation. 610 $aAlgebraic integer. 610 $aBanach algebra. 610 $aBasis (linear algebra). 610 $aBig O notation. 610 $aCircle group. 610 $aCoefficient. 610 $aCommutative property. 610 $aCommutative ring. 610 $aCommutator. 610 $aComplex number. 610 $aComputation. 610 $aCongruence subgroup. 610 $aCoprime integers. 610 $aCyclic group. 610 $aDedekind domain. 610 $aDirect limit. 610 $aDirect proof. 610 $aDirect sum. 610 $aDiscrete valuation. 610 $aDivision algebra. 610 $aDivision ring. 610 $aElementary matrix. 610 $aElliptic function. 610 $aExact sequence. 610 $aExistential quantification. 610 $aExterior algebra. 610 $aFactorization. 610 $aFinite group. 610 $aFree abelian group. 610 $aFunction (mathematics). 610 $aFundamental group. 610 $aGalois extension. 610 $aGalois group. 610 $aGeneral linear group. 610 $aGroup extension. 610 $aHausdorff space. 610 $aHomological algebra. 610 $aHomomorphism. 610 $aHomotopy. 610 $aIdeal (ring theory). 610 $aIdeal class group. 610 $aIdentity element. 610 $aIdentity matrix. 610 $aIntegral domain. 610 $aInvertible matrix. 610 $aIsomorphism class. 610 $aK-theory. 610 $aKummer theory. 610 $aLattice (group). 610 $aLeft inverse. 610 $aLocal field. 610 $aLocal ring. 610 $aMathematics. 610 $aMatsumoto's theorem. 610 $aMaximal ideal. 610 $aMeromorphic function. 610 $aMonomial. 610 $aNatural number. 610 $aNoetherian. 610 $aNormal subgroup. 610 $aNumber theory. 610 $aOpen set. 610 $aPicard group. 610 $aPolynomial. 610 $aPrime element. 610 $aPrime ideal. 610 $aProjective module. 610 $aQuadratic form. 610 $aQuaternion. 610 $aQuotient ring. 610 $aRational number. 610 $aReal number. 610 $aRight inverse. 610 $aRing of integers. 610 $aRoot of unity. 610 $aSchur multiplier. 610 $aScientific notation. 610 $aSimple algebra. 610 $aSpecial case. 610 $aSpecial linear group. 610 $aSubgroup. 610 $aSummation. 610 $aSurjective function. 610 $aTensor product. 610 $aTheorem. 610 $aTopological K-theory. 610 $aTopological group. 610 $aTopological space. 610 $aTopology. 610 $aTorsion group. 610 $aVariable (mathematics). 610 $aVector space. 610 $aWedderburn's theorem. 610 $aWeierstrass function. 610 $aWhitehead torsion. 615 0$aAssociative rings. 615 0$aAbelian groups. 615 0$aFunctor theory. 676 $a512/.4 700 $aMilnor$b John$040532 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154752203321 996 $aIntroduction to Algebraic K-Theory. (AM-72), Volume 72$92780976 997 $aUNINA