LEADER 03418nam 22007335 450 001 9910154752103321 005 20190708092533.0 010 $a1-4008-8188-9 024 7 $a10.1515/9781400881888 035 $a(CKB)3710000000620151 035 $a(MiAaPQ)EBC4738605 035 $a(DE-B1597)468003 035 $a(OCoLC)979633759 035 $a(DE-B1597)9781400881888 035 $a(EXLCZ)993710000000620151 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aInvariant Forms on Grassmann Manifolds. (AM-89), Volume 89 /$fWilhelm Stoll 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$d©1978 215 $a1 online resource (128 pages) 225 0 $aAnnals of Mathematics Studies ;$v252 311 $a0-691-08198-0 311 $a0-691-08199-9 320 $aIncludes bibliographical references and index. 327 $tFrontmatter -- $tCONTENTS -- $tPREFACE -- $tGERMAN LETTERS -- $tINTRODUCTION -- $t1. FLAG SPACES -- $t2. SCHUBERT VARIETIES -- $t3. CHERN FORMS -- $t4. THE THEOREM OF BOTT AND CHERN -- $t5. THE POINCARÉ DUAL OF A SCHUBERT VARIETY -- $t6. MATSUSHIMA'S THEOREM -- $t7. THE THEOREMS OF PIERI AND GIAMBELLI -- $tAPPENDIX -- $tREFERENCES -- $tINDEX -- $tBackmatter 330 $aThis work offers a contribution in the geometric form of the theory of several complex variables. Since complex Grassmann manifolds serve as classifying spaces of complex vector bundles, the cohomology structure of a complex Grassmann manifold is of importance for the construction of Chern classes of complex vector bundles. The cohomology ring of a Grassmannian is therefore of interest in topology, differential geometry, algebraic geometry, and complex analysis. Wilhelm Stoll treats certain aspects of the complex analysis point of view.This work originated with questions in value distribution theory. Here analytic sets and differential forms rather than the corresponding homology and cohomology classes are considered. On the Grassmann manifold, the cohomology ring is isomorphic to the ring of differential forms invariant under the unitary group, and each cohomology class is determined by a family of analytic sets. 410 0$aAnnals of mathematics studies ;$vNumber 89. 606 $aGrassmann manifolds 606 $aDifferential forms 606 $aInvariants 610 $aCalculation. 610 $aCohomology ring. 610 $aCohomology. 610 $aComplex space. 610 $aCotangent bundle. 610 $aDiagram (category theory). 610 $aExterior algebra. 610 $aGrassmannian. 610 $aHolomorphic vector bundle. 610 $aManifold. 610 $aRegular map (graph theory). 610 $aRemainder. 610 $aRepresentation theorem. 610 $aSchubert variety. 610 $aSesquilinear form. 610 $aTheorem. 610 $aVector bundle. 610 $aVector space. 615 0$aGrassmann manifolds. 615 0$aDifferential forms. 615 0$aInvariants. 676 $a514/.224 700 $aStoll$b Wilhelm, $0354798 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154752103321 996 $aInvariant Forms on Grassmann Manifolds. (AM-89), Volume 89$92788684 997 $aUNINA