LEADER 09019nam 22019455 450 001 9910154752003321 005 20190708092533.0 010 $a1-4008-8151-X 024 7 $a10.1515/9781400881512 035 $a(CKB)3710000000620152 035 $a(MiAaPQ)EBC4738774 035 $a(DE-B1597)468020 035 $a(OCoLC)979746990 035 $a(OCoLC)990478008 035 $a(DE-B1597)9781400881512 035 $a(EXLCZ)993710000000620152 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aKnots, Groups and 3-Manifolds (AM-84), Volume 84 $ePapers Dedicated to the Memory of R.H. Fox. (AM-84) /$fLee Paul Neuwirth 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$d©1975 215 $a1 online resource (352 pages) $cillustrations 225 0 $aAnnals of Mathematics Studies ;$v233 311 $a0-691-08170-0 311 $a0-691-08167-0 320 $aIncludes bibliographies. 327 $tFrontmatter -- $tCONTENTS -- $tINTRODUCTION / $rNeuwirth, L. -- $tBIBLIOGRAPHY, RALPH HARTZLER FOX (1913-1973) -- $tKnots and Links -- $tSYMMETRIC FIBERED LINKS / $rGoldsmith, Deborah L. -- $tKNOT MODULES / $rLevine, Jerome -- $tTHE THIRD HOMOTOPY GROUP OF SOME HIGHER DIMENSIONAL KNOTS / $rLomonaco, S. J . -- $tOCTAHEDRAL KNOT COVERS / $rPerko, Kenneth A. -- $tSOME KNOTS SPANNED BY MORE THAN ONE UNKNOTTED SURFACE OF MINIMAL GENUS / $rTrotter, H. F . -- $tGROUPS AND MANIFOLDS CHARACTERIZING LINKS / $rWhitten, Wilbur -- $tGroup Theory -- $tHNN GROUPS AND GROUPS WITH CENTER / $rCossey, John / Smythe, N. -- $tQUOTIENTS OF THE POWERS OF THE AUGMENTATION IDEAL IN A GROUP RING / $rStallings, John R. -- $tKNOT-LIKE GROUPS / $rStrasser, Elvira Rapaport -- $t3-Dimensional Manifolds -- $tON THE EQUIVALENCE OF HEEGAARD SPLITTINGS OF CLOSED, ORIENT ABLE 3-MANIFOLDS / $rBirman, Joan S. -- $tBRANCHED CYCLIC COVERINGS / $rCappell, Sylvain E. / Shaneson, Julius L. -- $tON THE 3-DIMENSIONAL BRIESKORN MANIFOLDS M(p,q,r) / $rMilnor, John -- $tSURGERY ON LINKS AND DOUBLE BRANCHED COVERS OF S3 / $rMontesinos, Jose M. -- $tPLANAR REGULAR COVERINGS OF ORIENTABLE CLOSED SURFACES / $rPapakyriakopoulos, C. D. -- $tINFINITELY DIVISIBLE ELEMENTS IN 3-MANIFOLD GROUPS / $rShalen, Peter B. -- $tBackmatter 330 $aThere is a sympathy of ideas among the fields of knot theory, infinite discrete group theory, and the topology of 3-manifolds. This book contains fifteen papers in which new results are proved in all three of these fields. These papers are dedicated to the memory of Ralph H. Fox, one of the world's leading topologists, by colleagues, former students, and friends.In knot theory, papers have been contributed by Goldsmith, Levine, Lomonaco, Perko, Trotter, and Whitten. Of these several are devoted to the study of branched covering spaces over knots and links, while others utilize the braid groups of Artin.Cossey and Smythe, Stallings, and Strasser address themselves to group theory. In his contribution Stallings describes the calculation of the groups In/In+1 where I is the augmentation ideal in a group ring RG. As a consequence, one has for each k an example of a k-generator l-relator group with no free homomorphs. In the third part, papers by Birman, Cappell, Milnor, Montesinos, Papakyriakopoulos, and Shalen comprise the treatment of 3-manifolds. Milnor gives, besides important new results, an exposition of certain aspects of our current knowledge regarding the 3- dimensional Brieskorn manifolds. 410 0$aAnnals of mathematics studies ;$vno. 84. 606 $aKnot theory 606 $aGroup theory 606 $aThree-manifolds (Topology) 610 $a3-manifold. 610 $a3-sphere. 610 $aAdditive group. 610 $aAlexander duality. 610 $aAlgebraic equation. 610 $aAlgebraic surface. 610 $aAlgebraic variety. 610 $aAutomorphic form. 610 $aAutomorphism. 610 $aBig O notation. 610 $aBilinear form. 610 $aBorromean rings. 610 $aBoundary (topology). 610 $aBraid group. 610 $aCartesian product. 610 $aCentral series. 610 $aChain rule. 610 $aCharacteristic polynomial. 610 $aCoefficient. 610 $aCohomological dimension. 610 $aCommutative ring. 610 $aCommutator subgroup. 610 $aComplex Lie group. 610 $aComplex coordinate space. 610 $aComplex manifold. 610 $aComplex number. 610 $aConjugacy class. 610 $aConnected sum. 610 $aCoprime integers. 610 $aCoset. 610 $aCounterexample. 610 $aCyclic group. 610 $aDedekind domain. 610 $aDiagram (category theory). 610 $aDiffeomorphism. 610 $aDisjoint union. 610 $aDivisibility rule. 610 $aDouble coset. 610 $aEquation. 610 $aEquivalence class. 610 $aEuler characteristic. 610 $aFiber bundle. 610 $aFinite group. 610 $aFundamental group. 610 $aGenerating set of a group. 610 $aGraded ring. 610 $aGraph product. 610 $aGroup ring. 610 $aGroup theory. 610 $aGroupoid. 610 $aHeegaard splitting. 610 $aHolomorphic function. 610 $aHomeomorphism. 610 $aHomological algebra. 610 $aHomology (mathematics). 610 $aHomology sphere. 610 $aHomomorphism. 610 $aHomotopy group. 610 $aHomotopy sphere. 610 $aHomotopy. 610 $aHurewicz theorem. 610 $aInfimum and supremum. 610 $aInteger matrix. 610 $aInteger. 610 $aIntersection number (graph theory). 610 $aIntersection theory. 610 $aKnot group. 610 $aKnot polynomial. 610 $aLoop space. 610 $aMain diagonal. 610 $aManifold. 610 $aMapping cylinder. 610 $aMathematical induction. 610 $aMeromorphic function. 610 $aMonodromy. 610 $aMonomorphism. 610 $aMultiplicative group. 610 $aPermutation. 610 $aPoincaré conjecture. 610 $aPrincipal ideal domain. 610 $aProportionality (mathematics). 610 $aQuotient space (topology). 610 $aRiemann sphere. 610 $aRiemann surface. 610 $aSeifert fiber space. 610 $aSimplicial category. 610 $aSpecial case. 610 $aSpectral sequence. 610 $aSubgroup. 610 $aSubmanifold. 610 $aSurjective function. 610 $aSymmetric group. 610 $aSymplectic matrix. 610 $aTheorem. 610 $aThree-dimensional space (mathematics). 610 $aTopology. 610 $aTorus knot. 610 $aTriangle group. 610 $aVariable (mathematics). 610 $aWeak equivalence (homotopy theory). 615 0$aKnot theory. 615 0$aGroup theory. 615 0$aThree-manifolds (Topology) 676 $a514.2 700 $aNeuwirth$b Lee Paul, $0535864 702 $aBirman$b Joan S., $4ctb$4https://id.loc.gov/vocabulary/relators/ctb 702 $aCappell$b Sylvain E., $4ctb$4https://id.loc.gov/vocabulary/relators/ctb 702 $aCossey$b John, $4ctb$4https://id.loc.gov/vocabulary/relators/ctb 702 $aGoldsmith$b Deborah L., $4ctb$4https://id.loc.gov/vocabulary/relators/ctb 702 $aLevine$b Jerome, $4ctb$4https://id.loc.gov/vocabulary/relators/ctb 702 $aLomonaco$b S. J ., $4ctb$4https://id.loc.gov/vocabulary/relators/ctb 702 $aMilnor$b John, $4ctb$4https://id.loc.gov/vocabulary/relators/ctb 702 $aMontesinos$b Jose M., $4ctb$4https://id.loc.gov/vocabulary/relators/ctb 702 $aNeuwirth$b L., $4ctb$4https://id.loc.gov/vocabulary/relators/ctb 702 $aPapakyriakopoulos$b C. D., $4ctb$4https://id.loc.gov/vocabulary/relators/ctb 702 $aPerko$b Kenneth A., $4ctb$4https://id.loc.gov/vocabulary/relators/ctb 702 $aShalen$b Peter B., $4ctb$4https://id.loc.gov/vocabulary/relators/ctb 702 $aShaneson$b Julius L., $4ctb$4https://id.loc.gov/vocabulary/relators/ctb 702 $aSmythe$b N., $4ctb$4https://id.loc.gov/vocabulary/relators/ctb 702 $aStallings$b John R., $4ctb$4https://id.loc.gov/vocabulary/relators/ctb 702 $aStrasser$b Elvira Rapaport, $4ctb$4https://id.loc.gov/vocabulary/relators/ctb 702 $aTrotter$b H. F ., $4ctb$4https://id.loc.gov/vocabulary/relators/ctb 702 $aWhitten$b Wilbur, $4ctb$4https://id.loc.gov/vocabulary/relators/ctb 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154752003321 996 $aKnots, Groups and 3-Manifolds (AM-84), Volume 84$92786172 997 $aUNINA