LEADER 04600nam 22012375 450 001 9910154751703321 005 20190708092533.0 010 $a1-4008-8162-5 024 7 $a10.1515/9781400881628 035 $a(CKB)3710000000620156 035 $a(MiAaPQ)EBC4738542 035 $a(DE-B1597)467944 035 $a(OCoLC)979633636 035 $a(DE-B1597)9781400881628 035 $a(EXLCZ)993710000000620156 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aMultiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105 /$fMariano Giaquinta 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$d©1984 215 $a1 online resource (309 pages) 225 0 $aAnnals of Mathematics Studies ;$v263 311 $a0-691-08330-4 311 $a0-691-08331-2 320 $aIncludes bibliographical references. 327 $tFrontmatter -- $tContents -- $tPreface / $rGiaquinta, Mariano -- $tChapter I: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems / $rGiaquinta, Mariano -- $tChapter II: An Introduction to the Regularity Problem -- $tChapter III: Linear Systems: The Regularity Theory -- $tChapter IV: Systems in Variation: The Indirect Approach to the Regularity -- $tChapter V: Reverse Holder Inequalities And LP-Estimates -- $tChapter VI: Nonlinear Elliptic Systems: The Direct Approach to Regularity -- $tChapter VII: Nonlinear Elliptic Systems: Special Structures and Everywhere Regularity -- $tChapter VIII: A Few Remarks and Extensions -- $tChapter IX: Direct Methods for the Regularity -- $tReferences -- $tBackmatter 330 $aThe description for this book, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105, will be forthcoming. 410 0$aAnnals of mathematics studies ;$vNumber 105. 606 $aCalculus of variations 606 $aMultiple integrals 606 $aDifferential equations, Elliptic 610 $aA priori estimate. 610 $aAnalytic function. 610 $aBoundary value problem. 610 $aCalculus of variations. 610 $aCoefficient. 610 $aCompact space. 610 $aConvex function. 610 $aConvex set. 610 $aCorollary. 610 $aCounterexample. 610 $aDavid Hilbert. 610 $aDense set. 610 $aDerivative. 610 $aDifferentiable function. 610 $aDifferential geometry. 610 $aDirichlet integral. 610 $aDirichlet problem. 610 $aDivision by zero. 610 $aEllipse. 610 $aEnergy functional. 610 $aEquation. 610 $aEstimation. 610 $aEuler equations (fluid dynamics). 610 $aExistential quantification. 610 $aFirst variation. 610 $aGeneric property. 610 $aHarmonic function. 610 $aHarmonic map. 610 $aHausdorff dimension. 610 $aHölder's inequality. 610 $aI0. 610 $aInfimum and supremum. 610 $aLimit superior and limit inferior. 610 $aLinear equation. 610 $aMaxima and minima. 610 $aMaximal function. 610 $aMetric space. 610 $aMinimal surface. 610 $aMultiple integral. 610 $aNonlinear system. 610 $aObstacle problem. 610 $aOpen set. 610 $aPartial derivative. 610 $aQuantity. 610 $aSemi-continuity. 610 $aSingular solution. 610 $aSmoothness. 610 $aSobolev space. 610 $aSpecial case. 610 $aStationary point. 610 $aSubsequence. 610 $aSubset. 610 $aTheorem. 610 $aTopological property. 610 $aTopology. 610 $aUniform convergence. 610 $aVariational inequality. 610 $aWeak formulation. 610 $aWeak solution. 615 0$aCalculus of variations. 615 0$aMultiple integrals. 615 0$aDifferential equations, Elliptic. 676 $a515/.64 700 $aGiaquinta$b Mariano, $042383 702 $aGiaquinta$b Mariano, $4ctb$4https://id.loc.gov/vocabulary/relators/ctb 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154751703321 996 $aMultiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105$92788683 997 $aUNINA