LEADER 06694nam 22018135 450 001 9910154750003321 005 20190708092533.0 010 $a1-4008-8212-5 024 7 $a10.1515/9781400882120 035 $a(CKB)3710000000622813 035 $a(SSID)ssj0001651281 035 $a(PQKBManifestationID)16425334 035 $a(PQKBTitleCode)TC0001651281 035 $a(PQKBWorkID)12499448 035 $a(PQKB)10754682 035 $a(MiAaPQ)EBC4738783 035 $a(DE-B1597)467973 035 $a(OCoLC)979970560 035 $a(DE-B1597)9781400882120 035 $a(EXLCZ)993710000000622813 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aGauss Sums, Kloosterman Sums, and Monodromy Groups. (AM-116), Volume 116 /$fNicholas M. Katz 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$d©1988 215 $a1 online resource (257 pages) $cillustrations 225 0 $aAnnals of Mathematics Studies ;$v338 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-691-08432-7 311 $a0-691-08433-5 320 $aBibliography. 327 $tFrontmatter -- $tContents -- $tIntroduction -- $tCHAPTER 1. Breaks and Swan Conductors -- $tCHAPTER 2. Curves and Their Cohomology -- $tCHAPTER 3. Equidistribution in Equal Characteristic -- $tCHAPTER 4. Gauss Sums and Kloosterman Sums: Kloosterman Sheaves -- $tCHAPTER 5. Convolution of Sheaves on Gm -- $tCHAPTER 6. Local Convolution -- $tCHAPTER 7. Local Monodromy at Zero of a Convolution: Detailed Study -- $tCHAPTER 8. Complements on Convolution -- $tCHAPTER 9. Equidistribution in (S1)r of r-tuples of Angles of Gauss Sums -- $tCHAPTER 10. Local Monodromy at ? of Kloosterman Sheaves -- $tCHAPTER 11. Global Monodromy of Kloosterman Sheaves -- $tCHAPTER 12. Integral Monodromy of Kloosterman Sheaves (d'après O. Gabber) -- $tCHAPTER 13. Equidistribution of "Angles" of Kloosterman Sums -- $tReferences 330 $aThe study of exponential sums over finite fields, begun by Gauss nearly two centuries ago, has been completely transformed in recent years by advances in algebraic geometry, culminating in Deligne's work on the Weil Conjectures. It now appears as a very attractive mixture of algebraic geometry, representation theory, and the sheaf-theoretic incarnations of such standard constructions of classical analysis as convolution and Fourier transform. The book is simultaneously an account of some of these ideas, techniques, and results, and an account of their application to concrete equidistribution questions concerning Kloosterman sums and Gauss sums. 410 0$aAnnals of mathematics studies ;$vno. 116. 606 $aGaussian sums 606 $aKloosterman sums 606 $aHomology theory 606 $aMonodromy groups 610 $aAbelian category. 610 $aAbsolute Galois group. 610 $aAbsolute value. 610 $aAdditive group. 610 $aAdjoint representation. 610 $aAffine variety. 610 $aAlgebraic group. 610 $aAutomorphic form. 610 $aAutomorphism. 610 $aBig O notation. 610 $aCartan subalgebra. 610 $aCharacteristic polynomial. 610 $aClassification theorem. 610 $aCoefficient. 610 $aCohomology. 610 $aCokernel. 610 $aCombination. 610 $aCommutator. 610 $aCompactification (mathematics). 610 $aComplex Lie group. 610 $aComplex number. 610 $aConjugacy class. 610 $aContinuous function. 610 $aConvolution theorem. 610 $aConvolution. 610 $aDeterminant. 610 $aDiagonal matrix. 610 $aDimension (vector space). 610 $aDirect sum. 610 $aDual basis. 610 $aEigenvalues and eigenvectors. 610 $aEmpty set. 610 $aEndomorphism. 610 $aEquidistribution theorem. 610 $aEstimation. 610 $aExactness. 610 $aExistential quantification. 610 $aExponential sum. 610 $aExterior algebra. 610 $aFaithful representation. 610 $aFinite field. 610 $aFinite group. 610 $aFour-dimensional space. 610 $aFrobenius endomorphism. 610 $aFundamental group. 610 $aFundamental representation. 610 $aGalois group. 610 $aGauss sum. 610 $aHomomorphism. 610 $aInteger. 610 $aIrreducibility (mathematics). 610 $aIsomorphism class. 610 $aKloosterman sum. 610 $aL-function. 610 $aLeray spectral sequence. 610 $aLie algebra. 610 $aLie theory. 610 $aMaximal compact subgroup. 610 $aMethod of moments (statistics). 610 $aMonodromy theorem. 610 $aMonodromy. 610 $aMorphism. 610 $aMultiplicative group. 610 $aNatural number. 610 $aNilpotent. 610 $aOpen problem. 610 $aP-group. 610 $aPairing. 610 $aParameter space. 610 $aParameter. 610 $aPartially ordered set. 610 $aPerfect field. 610 $aPoint at infinity. 610 $aPolynomial ring. 610 $aPrime number. 610 $aQuotient group. 610 $aRepresentation ring. 610 $aRepresentation theory. 610 $aResidue field. 610 $aRiemann hypothesis. 610 $aRoot of unity. 610 $aSheaf (mathematics). 610 $aSimple Lie group. 610 $aSkew-symmetric matrix. 610 $aSmooth morphism. 610 $aSpecial case. 610 $aSpin representation. 610 $aSubgroup. 610 $aSupport (mathematics). 610 $aSymmetric matrix. 610 $aSymplectic group. 610 $aSymplectic vector space. 610 $aTensor product. 610 $aTheorem. 610 $aTrace (linear algebra). 610 $aTrivial representation. 610 $aVariable (mathematics). 610 $aWeil conjectures. 610 $aWeyl character formula. 610 $aZariski topology. 615 0$aGaussian sums. 615 0$aKloosterman sums. 615 0$aHomology theory. 615 0$aMonodromy groups. 676 $a512/.7 700 $aKatz$b Nicholas M., $059374 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154750003321 996 $aGauss Sums, Kloosterman Sums, and Monodromy Groups. (AM-116), Volume 116$92788797 997 $aUNINA