LEADER 04912nam 22015255 450 001 9910154748503321 005 20190708092533.0 010 $a1-4008-8221-4 024 7 $a10.1515/9781400882212 035 $a(CKB)3710000000627299 035 $a(MiAaPQ)EBC4738687 035 $a(DE-B1597)467969 035 $a(OCoLC)979743246 035 $a(DE-B1597)9781400882212 035 $a(EXLCZ)993710000000627299 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aDegree of Approximation by Polynomials in the Complex Domain. (AM-9), Volume 9 /$fWalter Edwin Sewell 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$dİ1943 215 $a1 online resource (252 pages) 225 0 $aAnnals of Mathematics Studies ;$v283 300 $a"Lithoprinted." 311 $a0-691-09572-8 320 $aBibliography. 327 $tFrontmatter -- $tPreface -- $tContents -- $tChapter I. Preliminaries -- $tPart I. Problem ? -- $tChapter II. Polynomial Inequalities -- $tChapter III. Tchebycheff Approximation -- $tChapter IV. Approximation Measured by a Line Integral -- $tPart II. Problem ? -- $tChapter V. Preliminaries -- $tChapter VI. Tchebycheff Approximation -- $tChapter VII. Approximation Measured by a Line Integral -- $tChapter VIII. Special Configurations -- $tBibliography 330 $aThe description for this book, Degree of Approximation by Polynomials in the Complex Domain. (AM-9), Volume 9, will be forthcoming. 410 0$aAnnals of mathematics studies ;$vno. 9. 606 $aApproximation theory 606 $aPolynomials 610 $a0B. 610 $aAddition. 610 $aAntiderivative. 610 $aApproximation. 610 $aArbitrarily large. 610 $aArc (geometry). 610 $aArc length. 610 $aBig O notation. 610 $aBijection. 610 $aBounded set (topological vector space). 610 $aBranch point. 610 $aCircumference. 610 $aCoefficient. 610 $aComplex analysis. 610 $aComplex number. 610 $aConformal map. 610 $aConnected space. 610 $aConstant of integration. 610 $aContinuous function. 610 $aCovering space. 610 $aDerivative. 610 $aDifference "ient. 610 $aDifferentiable function. 610 $aDimension. 610 $aElementary proof. 610 $aEquation. 610 $aEven and odd functions. 610 $aExistence theorem. 610 $aExistential quantification. 610 $aExterior (topology). 610 $aFloor and ceiling functions. 610 $aFourier series. 610 $aFunction of a real variable. 610 $aGeometry. 610 $aGreen's function. 610 $aHarmonic function. 610 $aHarmonic polynomial. 610 $aInfimum and supremum. 610 $aInfinitesimal. 610 $aInteger. 610 $aIsolated point. 610 $aIsolated singularity. 610 $aIterative method. 610 $aJordan curve theorem. 610 $aLeast squares. 610 $aLebesgue integration. 610 $aLemniscate. 610 $aLimit (mathematics). 610 $aLine integral. 610 $aLine segment. 610 $aLipschitz continuity. 610 $aLogarithm. 610 $aMathematician. 610 $aModulus of continuity. 610 $aNatural number. 610 $aNotation. 610 $aOpen problem. 610 $aOrthogonal polynomials. 610 $aPartial derivative. 610 $aPeriodic function. 610 $aPoint at infinity. 610 $aPolynomial. 610 $aRational function. 610 $aReal variable. 610 $aRectangle. 610 $aRequirement. 610 $aRiemann sum. 610 $aRoot of unity. 610 $aSecond derivative. 610 $aSet theory. 610 $aSign (mathematics). 610 $aSimply connected space. 610 $aSpecial case. 610 $aSuggestion. 610 $aSummation. 610 $aSurface integral. 610 $aTaylor series. 610 $aTheorem. 610 $aTheory. 610 $aTrigonometric functions. 610 $aTrigonometry. 610 $aUniform convergence. 610 $aUnit circle. 610 $aUpper and lower bounds. 610 $aVariable (mathematics). 610 $aWeight function. 615 0$aApproximation theory. 615 0$aPolynomials. 676 $a512.22 700 $aSewell$b Walter Edwin, $057102 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154748503321 996 $aDegree of Approximation by Polynomials in the Complex Domain. (AM-9), Volume 9$92788794 997 $aUNINA