LEADER 01217nam 2200301Ia 450 001 996389560203316 005 20210104172001.0 035 $a(CKB)4940000000094706 035 $a(EEBO)2240879286 035 $a(OCoLC)ocm64551296e 035 $a(OCoLC)64551296 035 $a(EXLCZ)994940000000094706 100 $a20060306d1656 uy 0 101 0 $aeng 135 $aurbn||||a|bb| 200 13$aAn antidote agaynst poperie$b[electronic resource] $emost necessarie for all in this back-slyding age. Wherein 1. The trueth is confirmed, by authoritie of scriptures, witnessing of antiquitie, and confession of the popish partie. 2. Popish scripturall arguments are answered, by the exposition both of father and of their own doctours /$fby William Guild 210 $aAberdene $cPrinted by James Brown$d1656 215 $a[12], 166 p 300 $aImperfect: pages tightly bound and have faded print. 300 $aReproduction of original in: University of Glasgow. Library. 330 $aeebo-0166 700 $aGuild$b William$f1586-1657.$01003699 801 0$bUMI 801 1$bUMI 906 $aBOOK 912 $a996389560203316 996 $aAn antidote agaynst poperie$92422161 997 $aUNISA LEADER 05344nam 22016575 450 001 9910154747703321 005 20190708092533.0 010 $a1-4008-8203-6 024 7 $a10.1515/9781400882038 035 $a(CKB)3710000000627307 035 $a(MiAaPQ)EBC4738653 035 $a(DE-B1597)467966 035 $a(OCoLC)979581014 035 $a(DE-B1597)9781400882038 035 $a(EXLCZ)993710000000627307 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aKnot Groups. Annals of Mathematics Studies. (AM-56), Volume 56 /$fLee Paul Neuwirth 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$dİ1965 215 $a1 online resource (120 pages) $cillustrations 225 0 $aAnnals of Mathematics Studies ;$v304 311 $a0-691-07991-9 320 $aIncludes bibliographical references and index. 327 $tFrontmatter -- $tCONTENTS -- $tCHAPTER I. INTRODUCTION -- $tCHAPTER II. NOTATION AND CONVENTIONS -- $tCHAPTER III. COMBINATORIAL COVERING SPACE THEORY FOR 3-MANIFOLDS -- $tCHAPTER IV. THE COMMUTATOR SUBGROUP AND THE ALEXANDER MATRIX -- $tCHAPTER V. SUBGROUPS -- $tCHAPTER VI. REPRESENTATIONS -- $tCHAPTER VII. AUTOMORPHISMS -- $tCHAPTER VIII. A GROUP OF GROUPS -- $tCHAPTER IX. THE CHARACTERIZATION PROBLEM -- $tCHAPTER X. THE STRENGTH OP THE GROUP -- $tCHAPTER XI. PROBLEMS -- $tAPPENDIX BY S. Eileriberg -- $tREFERENCES -- $tINDEX 330 $aThe description for this book, Knot Groups. Annals of Mathematics Studies. (AM-56), Volume 56, will be forthcoming. 410 0$aAnnals of mathematics studies ;$vNumber 56. 606 $aKnot theory 610 $aAbelian group. 610 $aAlexander duality. 610 $aAlexander polynomial. 610 $aAlgebraic theory. 610 $aAlgorithm. 610 $aAnalytic continuation. 610 $aAssociative property. 610 $aAutomorphism. 610 $aAxiom. 610 $aBijection. 610 $aBinary relation. 610 $aCalculation. 610 $aCentral series. 610 $aCharacterization (mathematics). 610 $aCobordism. 610 $aCoefficient. 610 $aCohomology. 610 $aCombinatorics. 610 $aCommutator subgroup. 610 $aComplete theory. 610 $aComputation. 610 $aConjugacy class. 610 $aConjugate element (field theory). 610 $aConnected space. 610 $aConnectedness. 610 $aCoprime integers. 610 $aCoset. 610 $aCovering space. 610 $aCurve. 610 $aCyclic group. 610 $aDehn's lemma. 610 $aDeterminant. 610 $aDiagonalization. 610 $aDiagram (category theory). 610 $aDimension. 610 $aDirect product. 610 $aEquivalence class. 610 $aEquivalence relation. 610 $aEuclidean space. 610 $aEuler characteristic. 610 $aExistential quantification. 610 $aFiber bundle. 610 $aFinite group. 610 $aFinitely generated module. 610 $aFrattini subgroup. 610 $aFree abelian group. 610 $aFundamental group. 610 $aGeometry. 610 $aGroup ring. 610 $aGroup theory. 610 $aGroup with operators. 610 $aHausdorff space. 610 $aHomeomorphism. 610 $aHomology (mathematics). 610 $aHomomorphism. 610 $aHomotopy group. 610 $aHomotopy. 610 $aIdentity matrix. 610 $aInner automorphism. 610 $aInterior (topology). 610 $aIntersection number (graph theory). 610 $aKnot group. 610 $aKnot theory. 610 $aLinear combination. 610 $aManifold. 610 $aMathematical induction. 610 $aMonomorphism. 610 $aMorphism. 610 $aMorse theory. 610 $aNatural transformation. 610 $aNon-abelian group. 610 $aNormal subgroup. 610 $aOrientability. 610 $aPermutation. 610 $aPolynomial. 610 $aPresentation of a group. 610 $aPrincipal ideal domain. 610 $aPrincipal ideal. 610 $aRoot of unity. 610 $aSemigroup. 610 $aSimplicial complex. 610 $aSimply connected space. 610 $aSpecial case. 610 $aSquare matrix. 610 $aSubgroup. 610 $aSubset. 610 $aSummation. 610 $aTheorem. 610 $aThree-dimensional space (mathematics). 610 $aTopological space. 610 $aTopology. 610 $aTorus knot. 610 $aTransfinite number. 610 $aTrefoil knot. 610 $aTrichotomy (mathematics). 610 $aTrivial group. 610 $aTriviality (mathematics). 610 $aTwo-dimensional space. 610 $aUnit vector. 610 $aWreath product. 615 0$aKnot theory. 676 $a513.8 700 $aNeuwirth$b Lee Paul, $0535864 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154747703321 996 $aKnot Groups. Annals of Mathematics Studies. (AM-56), Volume 56$92787931 997 $aUNINA