LEADER 06204nam 22017055 450 001 9910154747203321 005 20190708092533.0 010 $a1-4008-8244-3 024 7 $a10.1515/9781400882441 035 $a(CKB)3710000000627782 035 $a(SSID)ssj0001651235 035 $a(PQKBManifestationID)16426438 035 $a(PQKBTitleCode)TC0001651235 035 $a(PQKBWorkID)12978091 035 $a(PQKB)11680870 035 $a(MiAaPQ)EBC4738726 035 $a(DE-B1597)467935 035 $a(OCoLC)979747114 035 $a(DE-B1597)9781400882441 035 $a(EXLCZ)993710000000627782 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAutomorphic Representation of Unitary Groups in Three Variables. (AM-123), Volume 123 /$fJonathan David Rogawski 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$dİ1991 215 $a1 online resource (273 pages) 225 0 $aAnnals of Mathematics Studies ;$v306 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-691-08586-2 311 $a0-691-08587-0 320 $aIncludes bibliographical references and indexes. 327 $tFrontmatter -- $tIntroduction -- $tChapter 1. Preliminary definitions and notation -- $tChapter 2. The trace formula -- $tChapter 3. Stable conjugacy -- $tChapter 4. Orbital integrals and endoscopic groups -- $tChapter 5. Stabilization -- $tChapter 6. Weighted orbital integrals -- $tChapter 7. Elliptic singular terms -- $tChapter 8. Germ expansions and limit formulas -- $tChapter 9. Singularities -- $tChapter 10. The stable trace formula -- $tChapter 11. The Unitary group in two variables -- $tChapter 12. Representation theory -- $tChapter 13. Automorphic representations -- $tChapter 14. Comparison of inner forms -- $tChapter 15. Additional results -- $tReferences -- $tSubject Index -- $tNotation Index 330 $aThe purpose of this book is to develop the stable trace formula for unitary groups in three variables. The stable trace formula is then applied to obtain a classification of automorphic representations. This work represents the first case in which the stable trace formula has been worked out beyond the case of SL (2) and related groups. Many phenomena which will appear in the general case present themselves already for these unitary groups. 410 0$aAnnals of mathematics studies ;$vno. 123. 606 $aUnitary groups 606 $aTrace formulas 606 $aRepresentations of groups 606 $aAutomorphic forms 610 $aAbelian group. 610 $aAbuse of notation. 610 $aAddition. 610 $aAdmissible representation. 610 $aAlgebraic closure. 610 $aAlgebraic group. 610 $aAlgebraic number field. 610 $aAsymptotic expansion. 610 $aAutomorphism. 610 $aBase change map. 610 $aBase change. 610 $aBijection. 610 $aBorel subgroup. 610 $aCartan subgroup. 610 $aClass function (algebra). 610 $aCoefficient. 610 $aCombination. 610 $aCompact group. 610 $aComplementary series representation. 610 $aComplex number. 610 $aCongruence subgroup. 610 $aConjugacy class. 610 $aContinuous function. 610 $aCorollary. 610 $aCountable set. 610 $aDiagram (category theory). 610 $aDifferential operator. 610 $aDimension (vector space). 610 $aDimension. 610 $aDiscrete spectrum. 610 $aDivision algebra. 610 $aDivision by zero. 610 $aEigenvalues and eigenvectors. 610 $aEmbedding. 610 $aEquation. 610 $aExistential quantification. 610 $aFinite set. 610 $aFourier transform. 610 $aFundamental lemma (Langlands program). 610 $aG factor (psychometrics). 610 $aGalois group. 610 $aGlobal field. 610 $aHaar measure. 610 $aHecke algebra. 610 $aHomomorphism. 610 $aHyperbolic set. 610 $aIndex notation. 610 $aIrreducible representation. 610 $aIsomorphism class. 610 $aL-function. 610 $aLanglands classification. 610 $aLinear combination. 610 $aLocal field. 610 $aMathematical induction. 610 $aMaximal compact subgroup. 610 $aMaximal torus. 610 $aMorphism. 610 $aMultiplicative group. 610 $aNeighbourhood (mathematics). 610 $aOrbital integral. 610 $aOscillator representation. 610 $aP-adic number. 610 $aParity (mathematics). 610 $aPrincipal series representation. 610 $aQuaternion algebra. 610 $aQuaternion. 610 $aReductive group. 610 $aRegular element. 610 $aRemainder. 610 $aRepresentation theory. 610 $aRing of integers. 610 $aScientific notation. 610 $aSemisimple algebra. 610 $aSet (mathematics). 610 $aShimura variety. 610 $aSimple algebra. 610 $aSmoothness. 610 $aSpecial case. 610 $aStable distribution. 610 $aSubgroup. 610 $aSummation. 610 $aSupport (mathematics). 610 $aTate conjecture. 610 $aTensor product. 610 $aTheorem. 610 $aTrace formula. 610 $aTriangular matrix. 610 $aUnitary group. 610 $aVariable (mathematics). 610 $aWeight function. 610 $aWeil group. 615 0$aUnitary groups. 615 0$aTrace formulas. 615 0$aRepresentations of groups. 615 0$aAutomorphic forms. 676 $a512/.2 700 $aRogawski$b Jonathan David, $059388 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154747203321 996 $aAutomorphic Representation of Unitary Groups in Three Variables. (AM-123), Volume 123$92788677 997 $aUNINA