LEADER 01034nam--2200349---450- 001 990003237600203316 005 20090507104602.0 035 $a000323760 035 $aUSA01000323760 035 $a(ALEPH)000323760USA01 035 $a000323760 100 $a20090507d1970----km-y0itay50------ba 101 $ager 102 $aDE 105 $a||||||||001yy 200 1 $aGaloissche theorie der p-erweiterungen$fH. Koch$gMit einem geleitwort von I.R. Safarevic 210 $aBerlin$cVEB Deutscher Verlag$d1970 215 $aX, 161 p.$d24 cm 225 2 $aMathematische monographien$v10 410 0$12001$aMathematische monographien 606 0 $aTeoria di Galois 676 $a512.32 700 1$aKOCH,$bH.$0604017 702 1$aSAFAREVIC,$bI.R. 801 0$aIT$bsalbc$gISBD 912 $a990003237600203316 951 $a512.32 KOC$b5406/CBS$c512.32$d00219983 959 $aBK 969 $aSCI 979 $aRSIAV6$b90$c20090507$lUSA01$h1046 996 $aGaloissche theorie der p-erweiterungen$91013557 997 $aUNISA LEADER 03475nam 22005535 450 001 9910154745603321 005 20230913231922.0 010 $a1-4008-8245-1 024 7 $a10.1515/9781400882458 035 $a(CKB)3710000000631324 035 $a(MiAaPQ)EBC4738728 035 $a(DE-B1597)467953 035 $a(OCoLC)979970579 035 $a(DE-B1597)9781400882458 035 $a(Perlego)736266 035 $a(EXLCZ)993710000000631324 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aCombinatorics of Train Tracks. (AM-125), Volume 125 /$fR. C. Penner, John L. Harer 210 1$aPrinceton, NJ :$cPrinceton University Press,$d[2016] 210 4$dİ1992 215 $a1 online resource (233 pages) $cillustrations 225 1 $aAnnals of Mathematics Studies ;$v125 311 08$a0-691-08764-4 311 08$a0-691-02531-2 320 $aIncludes bibliographical references. 327 $tFrontmatter --$tContents --$tPreface --$tAcknowledgements --$tChapter 1. The Basic Theor --$tChapter 2. Combinatorial Equivalence --$tChapter 3. The Structure of ML0 --$tEpilogue --$tAddendum. The Action of Mapping Classes on ML0 --$tBibliography 330 $aMeasured geodesic laminations are a natural generalization of simple closed curves in surfaces, and they play a decisive role in various developments in two-and three-dimensional topology, geometry, and dynamical systems. This book presents a self-contained and comprehensive treatment of the rich combinatorial structure of the space of measured geodesic laminations in a fixed surface. Families of measured geodesic laminations are described by specifying a train track in the surface, and the space of measured geodesic laminations is analyzed by studying properties of train tracks in the surface. The material is developed from first principles, the techniques employed are essentially combinatorial, and only a minimal background is required on the part of the reader. Specifically, familiarity with elementary differential topology and hyperbolic geometry is assumed. The first chapter treats the basic theory of train tracks as discovered by W. P. Thurston, including recurrence, transverse recurrence, and the explicit construction of a measured geodesic lamination from a measured train track. The subsequent chapters develop certain material from R. C. Penner's thesis, including a natural equivalence relation on measured train tracks and standard models for the equivalence classes (which are used to analyze the topology and geometry of the space of measured geodesic laminations), a duality between transverse and tangential structures on a train track, and the explicit computation of the action of the mapping class group on the space of measured geodesic laminations in the surface. 410 0$aAnnals of mathematics studies ;$vno. 125. 606 $aGeodesics (Mathematics) 606 $aCW complexes 606 $aCombinatorial analysis 615 0$aGeodesics (Mathematics) 615 0$aCW complexes. 615 0$aCombinatorial analysis. 676 $a511/.6 686 $aSI 830$2rvk 700 $aPenner$b R. C.$0606391 702 $aHarer$b John L. 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154745603321 996 $aCombinatorics of Train Tracks. (AM-125), Volume 125$92788030 997 $aUNINA