LEADER 03987nam 22006135 450 001 9910154745503321 005 20190708092533.0 010 $a1-4008-8251-6 024 7 $a10.1515/9781400882519 035 $a(CKB)3710000000631327 035 $a(SSID)ssj0001651253 035 $a(PQKBManifestationID)16425331 035 $a(PQKBTitleCode)TC0001651253 035 $a(PQKBWorkID)12183564 035 $a(PQKB)10810515 035 $a(MiAaPQ)EBC4738736 035 $a(DE-B1597)467967 035 $a(OCoLC)979747115 035 $a(DE-B1597)9781400882519 035 $a(Perlego)736278 035 $a(EXLCZ)993710000000631327 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCommensurabilities among Lattices in PU (1,n). (AM-132), Volume 132 /$fG. Daniel Mostow, Pierre Deligne 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$d©1994 215 $a1 online resource (196 pages) $cillustrations 225 0 $aAnnals of Mathematics Studies ;$v313 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a0-691-00096-4 311 08$a0-691-03385-4 320 $aIncludes bibliographical references. 327 $tFrontmatter -- $tCONTENTS -- $tACKNOWLEDGMENTS -- $t§1. INTRODUCTION -- $t§2. PICARD GROUP AND COHOMOLOGY -- $t§3. COMPUTATIONS FOR Q AND Q+ -- $t§4. LAURICELLA'S HYPERGEOMETRIC FUNCTIONS -- $t§5. GELFAND'S DESCRIPTION OF HYPERGEOMETRIC FUNCTIONS -- $t§6. STRICT EXPONENTS -- $t§7. CHARACTERIZATION OF HYPERGEOMETRIC-LIKE LOCAL SYSTEMS -- $t§8. PRELIMINARIES ON MONODROMY GROUPS -- $t§9. BACKGROUND HEURISTICS -- $t§10. SOME COMMENSURABILITY THEOREMS -- $t§11. ANOTHER ISOGENY -- $t§12. COMMENSURABILITY AND DISCRETENESS -- $t§13. AN EXAMPLE -- $t§14. ORBIFOLD -- $t§15. ELLIPTIC AND EUCLIDEAN ?'S, REVISITED -- $t§16. LIVNE'S CONSTRUCTION OF LATTICES IN PU(1,2) -- $t§17. LIN E ARRANGEMENTS: QUESTIONS -- $tBibliography 330 $aThe first part of this monograph is devoted to a characterization of hypergeometric-like functions, that is, twists of hypergeometric functions in n-variables. These are treated as an (n+1) dimensional vector space of multivalued locally holomorphic functions defined on the space of n+3 tuples of distinct points on the projective line P modulo, the diagonal section of Auto P=m. For n=1, the characterization may be regarded as a generalization of Riemann's classical theorem characterizing hypergeometric functions by their exponents at three singular points. This characterization permits the authors to compare monodromy groups corresponding to different parameters and to prove commensurability modulo inner automorphisms of PU(1,n). The book includes an investigation of elliptic and parabolic monodromy groups, as well as hyperbolic monodromy groups. The former play a role in the proof that a surprising number of lattices in PU(1,2) constructed as the fundamental groups of compact complex surfaces with constant holomorphic curvature are in fact conjugate to projective monodromy groups of hypergeometric functions. The characterization of hypergeometric-like functions by their exponents at the divisors "at infinity" permits one to prove generalizations in n-variables of the Kummer identities for n-1 involving quadratic and cubic changes of the variable. 410 0$aAnnals of mathematics studies ;$vno. 132. 606 $aHypergeometric functions 606 $aMonodromy groups 606 $aLattice theory 615 0$aHypergeometric functions. 615 0$aMonodromy groups. 615 0$aLattice theory. 676 $a515/.25 700 $aDeligne$b Pierre, $042896 702 $aMostow$b G. Daniel, 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154745503321 996 $aCommensurabilities among Lattices in PU (1,n). (AM-132), Volume 132$92785739 997 $aUNINA LEADER 01359nam0 22003011i 450 001 UON00037041 005 20231205102128.381 100 $a20020107d1951 |0itac50 ba 101 $ager 102 $aHU 105 $a|||| 1|||| 200 1 $aRègészeti Tanulmanyok a Kesoi Hun Femmuvesseg Tortenetéhez$dArchaologische Studien zur Geschichte der spathunnischen Metallkunst$fNandor Fettich 210 $aBudapest$cAkademai Kiado$d1951 215 $a205 p., p. di tav.$d34 cm 410 1$1001UON00037038$12001 $aArchaeologia Hungarica. Series Nova$v31 510 1$3UON00355455$aArchaologische Studien zur Geschichte der spathunnischen Metallkunst 606 $aArcheologia$xUnni$xSiti$3UONC012396$2FI 606 $aMETALLI$xUNNI$3UONC012398$2FI 620 $aHU$dBudapest$3UONL000090 686 $aPE X C$cPAESI EXTRAASIATICI - ARCHEOLOGIA - SITI$2A 700 1$aFETTICH$bNándor$3UONV023751$0646986 712 $aAkadémiai Kiadó$3UONV245960$4650 801 $aIT$bSOL$c20250829$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00037041 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI PE X C 002 $eSI SA 27194 7 002 996 $aRègészeti Tanulmanyok a Kesoi Hun Femmuvesseg Tortenetéhez$91193459 997 $aUNIOR