LEADER 06434nam 22016935 450 001 9910154744503321 005 20210409114722.0 010 $a1-4008-8223-0 024 7 $a10.1515/9781400882236 035 $a(CKB)3710000000631346 035 $a(MiAaPQ)EBC4738690 035 $a(DE-B1597)467989 035 $a(OCoLC)979836508 035 $a(DE-B1597)9781400882236 035 $a(EXLCZ)993710000000631346 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aFinite Dimensional Vector Spaces. (AM-7), Volume 7 /$fPaul R. Halmos 210 1$aPrinceton, NJ :$cPrinceton University Press,$d[2016] 210 4$dİ1947 215 $a1 online resource (206 pages) 225 0 $aAnnals of Mathematics Studies ;$v285 300 $a"Lithoprinted." 311 $a0-691-09095-5 320 $aBibliography. 327 $tPREFACE --$tTABLE OP CONTENTS --$tERRATA --$tChapter I. SPACES --$tChapter II. TRANSFORMATIONS --$tChapter III. ORTHOGONALITY --$tAPPENDIX I. THE CLASSICAL CANONICAL FORM --$tAPPENDIX II. DIRECT PRODUCTS --$tAPPENDIX III. HILBERT SPACE --$tBIBLIOGRAPHY --$tLIST OF NOTATIONS --$tINDEX OF DEFINITIONS 330 $aAs a newly minted Ph.D., Paul Halmos came to the Institute for Advanced Study in 1938--even though he did not have a fellowship--to study among the many giants of mathematics who had recently joined the faculty. He eventually became John von Neumann's research assistant, and it was one of von Neumann's inspiring lectures that spurred Halmos to write Finite Dimensional Vector Spaces. The book brought him instant fame as an expositor of mathematics. Finite Dimensional Vector Spaces combines algebra and geometry to discuss the three-dimensional area where vectors can be plotted. The book broke ground as the first formal introduction to linear algebra, a branch of modern mathematics that studies vectors and vector spaces. The book continues to exert its influence sixty years after publication, as linear algebra is now widely used, not only in mathematics but also in the natural and social sciences, for studying such subjects as weather problems, traffic flow, electronic circuits, and population genetics. In 1983 Halmos received the coveted Steele Prize for exposition from the American Mathematical Society for "his many graduate texts in mathematics dealing with finite dimensional vector spaces, measure theory, ergodic theory, and Hilbert space." 410 0$aAnnals of mathematics studies ;$vno. 7. 606 $aTransformations (Mathematics) 606 $aGeneralized spaces 610 $aAbsolute value. 610 $aAccuracy and precision. 610 $aAddition. 610 $aAffine space. 610 $aAlgebraic closure. 610 $aAlgebraic equation. 610 $aAlgebraic operation. 610 $aAlgebraically closed field. 610 $aAssociative property. 610 $aAutomorphism. 610 $aAxiom. 610 $aBanach space. 610 $aBasis (linear algebra). 610 $aBilinear form. 610 $aBounded operator. 610 $aCardinal number. 610 $aCayley transform. 610 $aCharacteristic equation. 610 $aCharacterization (mathematics). 610 $aCoefficient. 610 $aCommutative property. 610 $aComplex number. 610 $aComplex plane. 610 $aComputation. 610 $aCongruence relation. 610 $aConvex set. 610 $aCoordinate system. 610 $aDeterminant. 610 $aDiagonal matrix. 610 $aDimension (vector space). 610 $aDimension. 610 $aDimensional analysis. 610 $aDirect product. 610 $aDirect proof. 610 $aDirect sum. 610 $aDivision by zero. 610 $aDot product. 610 $aDual basis. 610 $aEigenvalues and eigenvectors. 610 $aElementary proof. 610 $aEquation. 610 $aEuclidean space. 610 $aExistential quantification. 610 $aFunction of a real variable. 610 $aFunctional calculus. 610 $aFundamental theorem. 610 $aGeometry. 610 $aGram?Schmidt process. 610 $aHermitian matrix. 610 $aHilbert space. 610 $aInfimum and supremum. 610 $aJordan normal form. 610 $aLebesgue integration. 610 $aLinear combination. 610 $aLinear function. 610 $aLinear independence. 610 $aLinear map. 610 $aLinear programming. 610 $aLinearity. 610 $aManifold. 610 $aMathematical induction. 610 $aMathematics. 610 $aMinimal polynomial (field theory). 610 $aMinor (linear algebra). 610 $aMonomial. 610 $aMultiplication sign. 610 $aNatural number. 610 $aNilpotent. 610 $aNormal matrix. 610 $aNormal operator. 610 $aNumber theory. 610 $aOrthogonal basis. 610 $aOrthogonal complement. 610 $aOrthogonal coordinates. 610 $aOrthogonality. 610 $aOrthonormality. 610 $aPolynomial. 610 $aQuotient space (linear algebra). 610 $aQuotient space (topology). 610 $aReal number. 610 $aReal variable. 610 $aScalar (physics). 610 $aScientific notation. 610 $aSeries (mathematics). 610 $aSet (mathematics). 610 $aSign (mathematics). 610 $aSpecial case. 610 $aSpectral theorem. 610 $aSpectral theory. 610 $aSummation. 610 $aTensor calculus. 610 $aTheorem. 610 $aTopology. 610 $aTransitive relation. 610 $aUnbounded operator. 610 $aUncountable set. 610 $aUnit sphere. 610 $aUnitary transformation. 610 $aVariable (mathematics). 610 $aVector space. 615 0$aTransformations (Mathematics) 615 0$aGeneralized spaces. 676 $a512.52 700 $aHalmos$b Paul R$g(Paul Richard),$f1916-2006,$022815 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154744503321 996 $aFinite Dimensional Vector Spaces. (AM-7), Volume 7$92788312 997 $aUNINA LEADER 01607nam 2200433 450 001 9910706869603321 005 20211021083056.0 035 $a(CKB)5470000002458770 035 $a(OCoLC)1025329213 035 $a(EXLCZ)995470000002458770 100 $a20180227d2017 ua 0 101 0 $aeng 135 $aurbn||||a|||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aUnited States of America v. Michael T. Flynn, defendant $ecase 1:17-cr-00232, assigned to Judge Contreras, Rudolph 210 1$a[Washington, D.C.] :$cUnited States District Court for the District of Columbia,$d[2017] 215 $a1 online resource (volumes) 300 $a"Assign date: 11/30/2017." 300 $a"Robert S. Mueller, III, Special Counsel." 327 $aCriminal information -- Plea agreement -- Statement of the offense. 517 $aUnited States of America v. Michael T. Flynn, defendant 606 $aTrials (Perjury)$zUnited States 606 $aPresidents$zUnited States$xElection$y2016 607 $aUnited States$vTrials, litigation, etc 615 0$aTrials (Perjury) 615 0$aPresidents$xElection 701 $aMueller$b Robert S.$cIII,$f1944-$01393718 702 $aContreras$b Rudolph$f1962- 702 $aFlynn$b Michael T. 712 02$aUnited States, 712 02$aUnited States.$bDepartment of Justice.$bSpecial Counsel's Office, 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910706869603321 996 $aUnited States of America v. Michael T. Flynn, defendant$93468744 997 $aUNINA