LEADER 01114nam--2200385---450- 001 990000788390203316 005 20090827112959.0 010 $a88-13-18463-8 035 $a0078839 035 $aUSA010078839 035 $a(ALEPH)000078839USA01 035 $a0078839 100 $a20011205d1994----km-y0itay0103----ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $aAnalisi del giudizio civile di Cassazione$fFerdinando Mazzarella 205 $a2. ed. 210 $aPadova$cCEDAM$d1994 215 $aVII, 210 p$d24 cm 410 $12001 606 0 $aGiudizio civile 676 $a347.4507 700 1$aMAZZARELLA,$bFerdinando$0235590 801 0$aIT$bsalbc$gISBD 912 $a990000788390203316 951 $aXXVII.1.C 70 (IG IX 295)$b3515 G$cXXVII.1.C 70 (IG IX)$d00238734 959 $aBK 969 $aGIU 979 $aPATTY$b90$c20011205$lUSA01$h1237 979 $c20020403$lUSA01$h1725 979 $aPATRY$b90$c20040406$lUSA01$h1654 979 $aRSIAV2$b90$c20090827$lUSA01$h1129 996 $aAnalisi del giudizio civile di cassazione$9637503 997 $aUNISA LEADER 01602oam 2200397 450 001 9910704606503321 005 20130930101456.0 035 $a(CKB)5470000002443655 035 $a(OCoLC)855538983 035 $a(EXLCZ)995470000002443655 100 $a20130812d2013 ua 0 101 0 $aeng 135 $aurmn||||a|||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aEstimating tree biomass, carbon, and nitrogen in two vegetation control treatments in an 11-year-old Douglas-fir plantation on a highly productive site /$fWarren D. Devine [and six others] 210 1$aPortland, OR :$cUnited States Department of Agriculture, Forest Service, Pacific Northwest Research Station,$d2013. 215 $a1 online resource (iii, 29 pages) $cillustrations 225 1 $aResearch paper ;$vPNW-RP-591 300 $a"March 2013." 300 $aTitle from title screen (viewed on Aug. 12, 2013). 320 $aIncludes bibliographical references (pages 21-24). 606 $aDouglas fir$xWeed control$xAnalysis 606 $aTree farms$zWashington (State)$xEvaluation 615 0$aDouglas fir$xWeed control$xAnalysis. 615 0$aTree farms$xEvaluation. 700 $aDevine$b Warren D.$01385133 712 02$aForest Products Laboratory (U.S.), 801 0$bGPO 801 1$bGPO 801 2$bGPO 906 $aBOOK 912 $a9910704606503321 996 $aEstimating tree biomass, carbon, and nitrogen in two vegetation control treatments in an 11-year-old Douglas-fir plantation on a highly productive site$93544521 997 $aUNINA LEADER 03627nam 22005895 450 001 9910154743403321 005 20190708092533.0 010 $a1-4008-8144-7 024 7 $a10.1515/9781400881444 035 $a(CKB)3710000000631383 035 $a(SSID)ssj0001651331 035 $a(PQKBManifestationID)16426415 035 $a(PQKBTitleCode)TC0001651331 035 $a(PQKBWorkID)12567958 035 $a(PQKB)11769375 035 $a(MiAaPQ)EBC4738506 035 $a(DE-B1597)467918 035 $a(OCoLC)979970554 035 $a(DE-B1597)9781400881444 035 $a(Perlego)736142 035 $a(EXLCZ)993710000000631383 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe Spectral Theory of Toeplitz Operators. (AM-99), Volume 99 /$fL. Boutet de Monvel, Victor Guillemin 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$d©1981 215 $a1 online resource (168 pages) 225 0 $aAnnals of Mathematics Studies ;$v240 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a0-691-08279-0 311 08$a0-691-08284-7 320 $aIncludes bibliographical references. 327 $tFrontmatter -- $tTABLE OF CONTENTS -- $t§1. Introduction -- $t§2. GENERALIZED TOEPLITZ OPERATORS -- $t§3. FOURIER INTEGRAL OPERATORS OF HERMITE TYPE -- $t§4. THE METAPLECTIC REPRESENTATION -- $t§5. METALINEAR AND METAPLECTIC STRUCTURES ON MANIFOLDS -- $t§6. ISOTROPIC SUBSPACES OF SYMPLECTIC VECTOR SPACES -- $t§7. THE COMPOSITION THEOREM -- $t§8. THE PROOF OF THEOREM 7.5 -- $t§9. PULL-BACKS, PUSH-FORWARDS AND EXTERIOR TENSOR PRODUCTS -- $t§10. THE TRANSPORT EQUATION -- $t§11. SYMBOLIC PROPERTIES OF TOEPLITZ OPERATORS -- $t§12. THE TRACE FORMULA -- $t§13. SPECTRAL PROPERTIES OF TOEPLITZ OPERATORS -- $t§14. THE HILBERT POLYNOMIAL -- $t§15. SOME CONCLUDING REMARKS -- $tBIBLIOGRAPHY -- $tAPPENDIX: QUANTIZED CONTACT STRUCTURES -- $tBackmatter 330 $aThe theory of Toeplitz operators has come to resemble more and more in recent years the classical theory of pseudodifferential operators. For instance, Toeplitz operators possess a symbolic calculus analogous to the usual symbolic calculus, and by symbolic means one can construct parametrices for Toeplitz operators and create new Toeplitz operators out of old ones by functional operations.If P is a self-adjoint pseudodifferential operator on a compact manifold with an elliptic symbol that is of order greater than zero, then it has a discrete spectrum. Also, it is well known that the asymptotic behavior of its eigenvalues is closely related to the behavior of the bicharacteristic flow generated by its symbol.It is natural to ask if similar results are true for Toeplitz operators. In the course of answering this question, the authors explore in depth the analogies between Toeplitz operators and pseudodifferential operators and show that both can be viewed as the "quantized" objects associated with functions on compact contact manifolds. 410 0$aAnnals of mathematics studies ;$vNumber 99. 606 $aToeplitz operators 606 $aSpectral theory (Mathematics) 615 0$aToeplitz operators. 615 0$aSpectral theory (Mathematics) 676 $a515.7/246 700 $aBoutet de Monvel$b L., $060656 702 $aGuillemin$b Victor, 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154743403321 996 $aThe Spectral Theory of Toeplitz Operators. (AM-99), Volume 99$92788875 997 $aUNINA