LEADER 06901nam 22017415 450 001 9910154743003321 005 20190708092533.0 010 $a1-4008-8253-2 024 7 $a10.1515/9781400882533 035 $a(CKB)3710000000631389 035 $a(MiAaPQ)EBC4738737 035 $a(DE-B1597)468002 035 $a(OCoLC)954123965 035 $a(OCoLC)990415133 035 $a(DE-B1597)9781400882533 035 $a(EXLCZ)993710000000631389 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aTemperley-Lieb Recoupling Theory and Invariants of 3-Manifolds (AM-134), Volume 134 /$fLouis H. Kauffman, Sostenes Lins 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$d©1994 215 $a1 online resource (308 pages) $cillustrations 225 0 $aAnnals of Mathematics Studies ;$v315 311 $a0-691-03641-1 311 $a0-691-03640-3 320 $aIncludes bibliographical references and index. 327 $tFrontmatter -- $tContents -- $tChapter 1. Introduction -- $tChapter 2. Bracket Polynomial, Temperley-Lieb Algebra -- $tChapter 3. Jones-Wenzl Projectors -- $tChapter 4. The 3-Vertex -- $tChapter 5. Properties of Projectors and 3-Vertices -- $tChapter 6. ?-Evaluations -- $tChapter 7. Recoupling Theory Via Temperley-Lieb Algebra -- $tChapter 8. Chromatic Evaluations and the Tetrahedron -- $tChapter 9. A Summary of Recoupling Theory -- $tChapter 10. A 3-Manifold Invariant by State Summation -- $tChapter 11. The Shadow World -- $tChapter 12. The Witten-Reshetikhin- Turaev Invariant -- $tChapter 13. Blinks ? 3-Gems: Recognizing 3-Manifolds -- $tChapter 14. Tables of Quantum Invariants -- $tBibliography -- $tIndex 330 $aThis book offers a self-contained account of the 3-manifold invariants arising from the original Jones polynomial. These are the Witten-Reshetikhin-Turaev and the Turaev-Viro invariants. Starting from the Kauffman bracket model for the Jones polynomial and the diagrammatic Temperley-Lieb algebra, higher-order polynomial invariants of links are constructed and combined to form the 3-manifold invariants. The methods in this book are based on a recoupling theory for the Temperley-Lieb algebra. This recoupling theory is a q-deformation of the SU(2) spin networks of Roger Penrose. The recoupling theory is developed in a purely combinatorial and elementary manner. Calculations are based on a reformulation of the Kirillov-Reshetikhin shadow world, leading to expressions for all the invariants in terms of state summations on 2-cell complexes. Extensive tables of the invariants are included. Manifolds in these tables are recognized by surgery presentations and by means of 3-gems (graph encoded 3-manifolds) in an approach pioneered by Sostenes Lins. The appendices include information about gems, examples of distinct manifolds with the same invariants, and applications to the Turaev-Viro invariant and to the Crane-Yetter invariant of 4-manifolds. 410 0$aAnnals of mathematics studies ;$vno. 134. 606 $aKnot theory 606 $aThree-manifolds (Topology) 606 $aInvariants 610 $a3-manifold. 610 $aAddition. 610 $aAlgorithm. 610 $aAmbient isotopy. 610 $aAxiom. 610 $aBackslash. 610 $aBarycentric subdivision. 610 $aBijection. 610 $aBipartite graph. 610 $aBorromean rings. 610 $aBoundary parallel. 610 $aBracket polynomial. 610 $aCalculation. 610 $aCanonical form. 610 $aCartesian product. 610 $aCobordism. 610 $aCoefficient. 610 $aCombination. 610 $aCommutator. 610 $aComplex conjugate. 610 $aComputation. 610 $aConnected component (graph theory). 610 $aConnected sum. 610 $aCubic graph. 610 $aDiagram (category theory). 610 $aDimension. 610 $aDisjoint sets. 610 $aDisjoint union. 610 $aElaboration. 610 $aEmbedding. 610 $aEquation. 610 $aEquivalence class. 610 $aExplicit formula. 610 $aExplicit formulae (L-function). 610 $aFactorial. 610 $aFundamental group. 610 $aGraph (discrete mathematics). 610 $aGraph embedding. 610 $aHandlebody. 610 $aHomeomorphism. 610 $aHomology (mathematics). 610 $aIdentity element. 610 $aIntersection form (4-manifold). 610 $aInverse function. 610 $aJones polynomial. 610 $aKirby calculus. 610 $aKnot theory. 610 $aLine segment. 610 $aLinear independence. 610 $aMatching (graph theory). 610 $aMathematical physics. 610 $aMathematical proof. 610 $aMathematics. 610 $aMaxima and minima. 610 $aMonograph. 610 $aNatural number. 610 $aNetwork theory. 610 $aNotation. 610 $aNumerical analysis. 610 $aOrientability. 610 $aOrthogonality. 610 $aPairing. 610 $aPairwise. 610 $aParametrization. 610 $aParity (mathematics). 610 $aPartition function (mathematics). 610 $aPermutation. 610 $aPoincaré conjecture. 610 $aPolyhedron. 610 $aQuantum group. 610 $aQuantum invariant. 610 $aRecoupling. 610 $aRecursion. 610 $aReidemeister move. 610 $aResult. 610 $aRoger Penrose. 610 $aRoot of unity. 610 $aScientific notation. 610 $aSequence. 610 $aSignificant figures. 610 $aSimultaneous equations. 610 $aSmoothing. 610 $aSpecial case. 610 $aSphere. 610 $aSpin network. 610 $aSummation. 610 $aSymmetric group. 610 $aTetrahedron. 610 $aThe Geometry Center. 610 $aTheorem. 610 $aTheory. 610 $aThree-dimensional space (mathematics). 610 $aTime complexity. 610 $aTubular neighborhood. 610 $aTwo-dimensional space. 610 $aVector field. 610 $aVector space. 610 $aVertex (graph theory). 610 $aWinding number. 610 $aWrithe. 615 0$aKnot theory. 615 0$aThree-manifolds (Topology) 615 0$aInvariants. 676 $a514/.224 700 $aKauffman$b Louis H., $057757 702 $aLins$b Sostenes, 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154743003321 996 $aTemperley-Lieb Recoupling Theory and Invariants of 3-Manifolds (AM-134), Volume 134$92785665 997 $aUNINA