LEADER 06280nam 22017415 450 001 9910154742903321 005 20190708092533.0 010 $a1-4008-8192-7 024 7 $a10.1515/9781400881925 035 $a(CKB)3710000000631392 035 $a(SSID)ssj0001651340 035 $a(PQKBManifestationID)16425722 035 $a(PQKBTitleCode)TC0001651340 035 $a(PQKBWorkID)13116086 035 $a(PQKB)11365358 035 $a(MiAaPQ)EBC4738613 035 $a(DE-B1597)467957 035 $a(OCoLC)979581034 035 $a(DE-B1597)9781400881925 035 $a(EXLCZ)993710000000631392 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aThree-Dimensional Link Theory and Invariants of Plane Curve Singularities. (AM-110), Volume 110 /$fDavid Eisenbud, Walter D. Neumann 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$dİ1986 215 $a1 online resource (184 pages) $cillustration 225 0 $aAnnals of Mathematics Studies ;$v293 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-691-08380-0 311 $a0-691-08381-9 320 $aIncludes bibliographical references. 327 $tFrontmatter -- $tContents -- $tAbstract -- $tThree-Dimensional Link Theory and Invariants of Plane Curve Singularities -- $tIntroduction -- $tReview -- $tPreview -- $tChapter I: Foundations -- $tAppendix to Chapter I: Algebraic Links -- $tChapter II: Classification -- $tChapter III: Invariants -- $tChapter IV: Examples -- $tChapter V: Relation to Plumbing -- $tReferences -- $tBackmatter 330 $aThis book gives a new foundation for the theory of links in 3-space modeled on the modern developmentby Jaco, Shalen, Johannson, Thurston et al. of the theory of 3-manifolds. The basic construction is a method of obtaining any link by "splicing" links of the simplest kinds, namely those whose exteriors are Seifert fibered or hyperbolic. This approach to link theory is particularly attractive since most invariants of links are additive under splicing.Specially distinguished from this viewpoint is the class of links, none of whose splice components is hyperbolic. It includes all links constructed by cabling and connected sums, in particular all links of singularities of complex plane curves. One of the main contributions of this monograph is the calculation of invariants of these classes of links, such as the Alexander polynomials, monodromy, and Seifert forms. 410 0$aAnnals of mathematics studies ;$vNumber 110. 606 $aLink theory 606 $aInvariants 606 $aCurves, Plane 606 $aSingularities (Mathematics) 610 $a3-sphere. 610 $aAlexander Grothendieck. 610 $aAlexander polynomial. 610 $aAlgebraic curve. 610 $aAlgebraic equation. 610 $aAlgebraic geometry. 610 $aAlgebraic surface. 610 $aAlgorithm. 610 $aAmbient space. 610 $aAnalytic function. 610 $aApproximation. 610 $aBig O notation. 610 $aCall graph. 610 $aCartesian coordinate system. 610 $aCharacteristic polynomial. 610 $aClosed-form expression. 610 $aCohomology. 610 $aComputation. 610 $aConjecture. 610 $aConnected sum. 610 $aContradiction. 610 $aCoprime integers. 610 $aCorollary. 610 $aCurve. 610 $aCyclic group. 610 $aDeterminant. 610 $aDiagram (category theory). 610 $aDiffeomorphism. 610 $aDimension. 610 $aDisjoint union. 610 $aEigenvalues and eigenvectors. 610 $aEquation. 610 $aEquivalence class. 610 $aEuler number. 610 $aExistential quantification. 610 $aExterior (topology). 610 $aFiber bundle. 610 $aFibration. 610 $aFoliation. 610 $aFundamental group. 610 $aGeometry. 610 $aGraph (discrete mathematics). 610 $aGround field. 610 $aHomeomorphism. 610 $aHomology sphere. 610 $aIdentity matrix. 610 $aInteger matrix. 610 $aIntersection form (4-manifold). 610 $aIsolated point. 610 $aIsolated singularity. 610 $aJordan normal form. 610 $aKnot theory. 610 $aMathematical induction. 610 $aMonodromy matrix. 610 $aMonodromy. 610 $aN-sphere. 610 $aNatural transformation. 610 $aNewton polygon. 610 $aNewton's method. 610 $aNormal (geometry). 610 $aNotation. 610 $aPairwise. 610 $aParametrization. 610 $aPlane curve. 610 $aPolynomial. 610 $aPower series. 610 $aProjective plane. 610 $aPuiseux series. 610 $aQuantity. 610 $aRational function. 610 $aResolution of singularities. 610 $aRiemann sphere. 610 $aRiemann surface. 610 $aRoot of unity. 610 $aScientific notation. 610 $aSeifert surface. 610 $aSet (mathematics). 610 $aSign (mathematics). 610 $aSolid torus. 610 $aSpecial case. 610 $aStereographic projection. 610 $aSubmanifold. 610 $aSummation. 610 $aTheorem. 610 $aThree-dimensional space (mathematics). 610 $aTopology. 610 $aTorus knot. 610 $aTorus. 610 $aTubular neighborhood. 610 $aUnit circle. 610 $aUnit vector. 610 $aUnknot. 610 $aVariable (mathematics). 615 0$aLink theory. 615 0$aInvariants. 615 0$aCurves, Plane. 615 0$aSingularities (Mathematics) 676 $a514.2 700 $aEisenbud$b David, $057349 702 $aNeumann$b Walter D., 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154742903321 996 $aThree-Dimensional Link Theory and Invariants of Plane Curve Singularities. (AM-110), Volume 110$92033773 997 $aUNINA