LEADER 06367nam 2200769 450 001 9910153635703321 005 20230525195533.0 010 $a1-61504-733-6 024 7 $a10.4199/C00144ED1V01Y201610ISP067 035 $a(CKB)3710000000962284 035 $a(MiAaPQ)EBC4744545 035 $a(CaBNVSL)swl00406953 035 $a(OCoLC)964085804 035 $a(MOCL)201610ISP067 035 $a(EXLCZ)993710000000962284 100 $a20161206d2017 fy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aMolecular mechanisms of body water homeostasis /$fCarolyn M. Ecelbarger, Dharmendra Kumar Chaudhary, Hwal Lee, Swasti Tiwari 210 1$a[San Rafael, California] :$cMorgan & Claypool,$d2017. 215 $a1 online resource (112 pages) $ccolor illustrations 225 1 $aColloquium series on integrated systems physiology,$x2154-5626 ;$v# 68 300 $aPart of: Colloquium digital library of life sciences. 311 $a1-61504-732-8 320 $aIncludes bibliographical references (pages 75-97). 327 $a1. Water, water everywhere -- 1.1 Chapter overview -- 1.2 Body water composition -- 1.2.1 Changes in water homeostasis over the lifespan -- 1.2.2 Body water intake requirements -- 1.3 Measurement of total body water (TBW) -- 1.3.1 Body water compartmentalization -- 1.4 Dehydration -- 1.4.1 Exercise and water requirements -- 1.5 Environmental modulators of body water composition -- 1.5.1 High altitude -- 1.5.2 Extremes in temperature or humidity -- 1.5.3 Dietary alterations -- 327 $a2. The brain, AVP, and water balance -- 2.1 Chapter overview -- 2.2 The brain -- 2.3 Vasopressin and related neuropeptides -- 2.3.1 Regulation of vasopressin production and release -- 2.4 Vasopressin receptors -- 2.4.1 Receptor cloning -- 2.4.2 Receptor activation and signaling -- 2.4.3 Receptor localization -- 2.5 Vasopressin actions -- 2.5.1 Vasopressin and glomerular filtration rate (GFR) -- 2.5.2 Vasopressin and blood pressure control -- 2.5.2.1 AVPR2 are coupled to nitric oxide generation -- 2.5.2.2 Hypertension may correlate with urinary concentrating ability -- 327 $a3. Renal control of water reabsorption -- 3.1 Chapter overview -- 3.2 Blood filtration -- 3.3 The countercurrent multiplier mechanism -- 3.3.1 The Na-K-2Cl cotransporter (NKCC2) -- 3.3.2 Gradient in the inner medulla -- 3.4 The collecting duct -- 3.5 Urea transporters -- 3.6 Renal aquaporins -- 3.6.1 Aquaporin 1 -- 3.6.2 Aquaporin 2 -- 3.6.2.1 Short-term AQP2 regulation -- 3.6.2.2 Long-term AQP2 regulation -- 3.6.2.3 Regulators of AQP2 -- 3.6.3 Aquaporins 3 and 4 -- 3.6.4 Other aquaporins -- 327 $a4. Hyponatremia -- 4.1 Chapter overview -- 4.2 Causes and forms of hyponatremia -- 4.3 Hyponatremia and the brain -- 4.4 Hyponatremia and bone health -- 4.5 The syndrome of inappropriate antidiuretic hormone (SIADH) -- 4.5.1 Exercise-induced hyponatremia -- 4.6 Vasopressin escape and molecular mechanismS -- 4.7 Therapies/interventions -- 327 $a5. Diabetes insipidus -- 5.1 Chapter overview -- 5.2 Central diabetes insipidus (CDI) -- 5.3 Nephrogenic diabetes insipidus (NDI) -- 5.3.1 Mutations in the vasopressin V2 receptor -- 5.3.2 Mutations in AQP2 -- 5.4 Acquired NDI -- 5.5 Treatments for DI -- 327 $a6. Additional pathophysiological states associated with impaired water balance -- 6.1 Chapter overview -- 6.2 Heart failure -- 6.3 Hypertension -- 6.4 Cirrhosis of the liver -- 6.5 Compulsive water drinking -- 6.6 Burn injuries -- 6.7 Medications that alter fluid dynamics -- 6.7.1 Diuretics -- 6.7.2 Aquaretics -- 6.7.3 Peroxisome proliferator-activated receptor, subtype [gamma] (PPAR [gamma]) agonists -- 327 $aReferences -- Author biographies. 330 3 $aThis book discusses our intimate relationship with and dependence on water, how the body regulates its water levels, and various pathophysiological states associated with impairments in body water homeostasis. The human body consists of 70-80% water. Therefore, concise control of water homeostasis is essential to survival and involves coordination of several systems, but primarily the brain and kidney systems. Water requirements of the average healthy human range between 2-4 L/d, and a major portion of this can come from food sources. The major hormonal regulator of water balance is the anti-diuretic hormone, vasopressin. Vasopressin, a 9-amino acid peptide, is produced in the hypothalamus, stored in the posterior pituitary, and secreted when plasma osmolality rises. Vasopressin acts on the kidney to conserve water. The kidneys filter 180 L of blood per day, consisting of about 50-65% water, and reabsorb around 99% of this in the proximal tubule, distal tubule, and collecting duct, producing only 1-2 L of urine. The vasopressin-sensitive distal tubule and collecting duct are responsible for fine-tuning water reabsorption. Conditions exist, however, where urine cannot be concentrated effectively. This is known as diabetes insipidus and can lead to dehydration and failure to thrive. At the other extreme, hyponatremia (low serum sodium) is the inability to adequately dilute urine or get rid of free body water in excess of body needs, a serious and sometimes fatal condition. 410 0$aColloquium digital library of life sciences. 410 0$aColloquium series on integrated systems physiology ;$v# 68.$x2154-5626 606 $aOsmoregulation 606 $aWater in the body 606 $aOsmoregulation 606 $aBody Water 610 $awater homeostasis 610 $atotal body water 610 $akidney 610 $ahydration 610 $aaquaporin 610 $adiabetes insipidus 610 $ahyponatremia 610 $avasopressin 610 $aosmolality 615 0$aOsmoregulation. 615 0$aWater in the body. 615 2$aOsmoregulation. 615 20$aBody Water. 676 $a572.3 700 $aEcelbarger$b Carolyn M.$01264405 702 $aChaudhary$b Dharmendra Kumar 702 $aLee$b Hwal 702 $aTiwari$b Swasti 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910153635703321 996 $aMolecular mechanisms of body water homeostasis$92964335 997 $aUNINA