LEADER 12381nam 2200553 450 001 9910830946003321 005 20240207111236.0 010 $a1-119-75611-1 010 $a1-119-75609-X 035 $a(MiAaPQ)EBC7270155 035 $a(Au-PeEL)EBL7270155 035 $a(EXLCZ)9927561777300041 100 $a20230809d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMultiple Imputation and Its Application /$fJames R. Carpenter [and five others] 205 $aSecond edition. 210 1$aChichester, England :$cJohn Wiley & Sons Ltd,$d[2023] 210 4$d©2023 215 $a1 online resource (467 pages) 225 1 $aStatistics in Practice Series 311 08$aPrint version: Carpenter, James R. Multiple Imputation and Its Application Newark : John Wiley & Sons, Incorporated,c2023 9781119756088 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright -- Contents -- Part I FOUNDATIONS -- Chapter 1 Introduction -- 1.1 Reasons for missing data -- 1.2 Examples -- 1.3 Patterns of missing data -- 1.3.1 Consequences of missing data -- 1.4 Inferential framework and notation -- 1.4.1 Missing completely at random (MCAR) -- 1.4.2 Missing at random (MAR) -- 1.4.3 Missing not at random (MNAR) -- 1.4.4 Ignorability -- 1.5 Using observed data to inform assumptions about the missingness mechanism -- 1.6 Implications of missing data mechanisms for regression analyses -- 1.6.1 Partially observed response -- 1.6.2 Missing covariates -- 1.6.3 Missing covariates and response -- 1.6.4 Subtle issues I: the odds ratio -- 1.6.5 Implication for linear regression -- 1.6.6 Subtle issues II: sub?sample ignorability -- 1.6.7 Summary: when restricting to complete records is valid -- Summary -- Exercises -- Chapter 2 The multiple imputation procedure and its justification -- 2.1 Introduction -- 2.2 Intuitive outline of the MI procedure -- 2.3 The generic MI procedure -- 2.4 Bayesian justification of MI -- 2.5 Frequentist inference -- 2.5.1 Large number of imputations -- 2.5.2 Small number of imputations -- 2.5.3 Inference for vector & -- bfitbeta -- -- 2.5.4 Combining likelihood ratio tests -- 2.6 Choosing the number of imputations -- 2.7 Some simple examples -- 2.7.1 Estimating the mean with ?2 known by the imputer and analyst -- 2.7.2 Estimating the mean with ?2 known only by the imputer -- 2.7.3 Estimating the mean with ?2 unknown -- 2.7.4 General linear regression with ?2 known -- 2.8 MI in more general settings -- 2.8.1 Proper imputation -- 2.8.2 Congenial imputation and substantive model -- 2.8.3 Uncongenial imputation and substantive models -- 2.8.4 Survey sample settings -- 2.9 Constructing congenial imputation models -- Discussion -- Exercises. 327 $aPart II MULTIPLE IMPUTATION FOR SIMPLE DATA STRUCTURES -- Chapter 3 Multiple imputation of quantitative data -- 3.1 Regression imputation with a monotone missingness pattern -- 3.1.1 MAR mechanisms consistent with a monotone pattern -- 3.1.2 Justification -- 3.2 Joint modelling -- 3.2.1 Fitting the imputation model -- 3.2.2 Adding covariates -- 3.3 Full conditional specification -- 3.3.1 Justification -- 3.4 Full conditional specification versus joint modelling -- 3.5 Software for multivariate normal imputation -- 3.6 Discussion -- 3.6 Exercises -- Chapter 4 Multiple imputation of binary and ordinal data -- 4.1 Sequential imputation with monotone missingness pattern -- 4.2 Joint modelling with the multivariate normal distribution -- 4.3 Modelling binary data using latent normal variables -- 4.3.1 Latent normal model for ordinal data -- 4.4 General location model -- 4.5 Full conditional specification -- 4.5.1 Justification -- 4.6 Issues with over?fitting -- 4.7 Pros and cons of the various approaches -- 4.8 Software -- Discussion -- Exercises -- Chapter 5 Imputation of unordered categorical data -- 5.1 Monotone missing data -- 5.2 Multivariate normal imputation for categorical data -- 5.3 Maximum indicant model -- 5.3.1 Continuous and categorical variable -- 5.3.2 Imputing missing data -- 5.4 General location model -- 5.5 FCS with categorical data -- 5.6 Perfect prediction issues with categorical data -- 5.7 Software -- Discussion -- Exercises -- Part III Multiple imputation in practice -- Chapter 6 Non?linear relationships, interactions, and other derived variables -- 6.1 Introduction -- 6.1.1 Interactions -- 6.1.2 Squares -- 6.1.3 Ratios -- 6.1.4 Sum scores -- 6.1.5 Composite endpoints -- 6.2 No missing data in derived variables -- 6.3 Simple methods -- 6.3.1 Impute then transform -- 6.3.2 Transform then impute/just another variable. 327 $a6.3.3 Adapting standard imputation models and passive imputation -- 6.3.4 Predictive mean matching -- 6.3.5 Imputation separately by groups for interactions -- 6.4 Substantive?model?compatible imputation -- 6.4.1 The basic idea -- 6.4.2 Latent?normal joint model SMC imputation -- 6.4.3 Factorised conditional model SMC imputation -- 6.4.4 Substantive model compatible fully conditional specification -- 6.4.5 Auxiliary variables -- 6.4.6 Missing outcome values -- 6.4.7 Congeniality versus compatibility -- 6.4.8 Discussion of SMC imputation -- 6.5 Returning to the problems -- 6.5.1 Ratios -- 6.5.2 Splines -- 6.5.3 Fractional polynomials -- 6.5.4 Multiple imputation with conditional questions or 'skips' -- Exercises -- Chapter 7 Survival data -- 7.1 Missing covariates in time?to?event data -- 7.1.1 Approximately compatible approaches -- 7.1.2 Substantive model compatible approaches -- 7.2 Imputing censored event times -- 7.3 Non?parametric, or 'hot deck' imputation -- 7.3.1 Non?parametric imputation for time?to?event data -- 7.4 Case-cohort designs -- 7.4.1 Standard analysis of case-cohort studies -- 7.4.2 Multiple imputation for case-cohort studies -- 7.4.3 Full cohort -- 7.4.4 Intermediate approaches -- 7.4.5 Sub?study approach -- Discussion -- Exercises -- Chapter 8 Prognostic models, missing data, and multiple imputation -- 8.1 Introduction -- 8.2 Motivating example -- 8.3 Missing data at model implementation -- 8.4 Multiple imputation for prognostic modelling -- 8.5 Model building -- 8.5.1 Model building with missing data -- 8.5.2 Imputing predictors when model building is to be performed -- 8.6 Model performance -- 8.6.1 How should we pool MI results for estimation of performance? -- 8.6.2 Calibration -- 8.6.3 Discrimination -- 8.6.4 Model performance measures with clinical interpretability -- 8.7 Model validation -- 8.7.1 Internal model validation. 327 $a8.7.2 External model validation -- 8.8 Incomplete data at implementation -- 8.8.1 MI for incomplete data at implementation -- 8.8.2 Alternatives to multiple imputation -- Exercises -- Chapter 9 Multi?level multiple imputation -- 9.1 Multi?level imputation model -- 9.1.1 Imputation of level?1 variables -- 9.1.2 Imputation of level 2 variables -- 9.1.3 Accommodating the substantive model -- 9.2 MCMC algorithm for imputation model -- 9.2.1 Ordered and unordered categorical data -- 9.2.2 Imputing missing values -- 9.2.3 Substantive model compatible imputation -- 9.2.4 Checking model convergence -- 9.3 Extensions -- 9.3.1 Cross?classification and three?level data -- 9.3.2 Random level 1 covariance matrices -- 9.3.3 Model fit -- 9.4 Other imputation methods -- 9.4.1 One?step and two?step FCS -- 9.4.2 Substantive model compatible imputation -- 9.4.3 Non?parametric methods -- 9.4.4 Comparisons of different methods -- 9.5 Individual participant data meta?analysis -- 9.5.1 Different measurement scales -- 9.5.2 When to apply Rubin's rules -- 9.5.3 Homoscedastic versus heteroscedastic imputation model -- 9.6 Software -- Discussion -- Exercises -- Chapter 10 Sensitivity analysis: MI unleashed -- 10.1 Review of MNAR modelling -- 10.2 Framing sensitivity analysis: estimands -- 10.2.1 Definition of the estimand -- 10.2.2 Two common estimands -- 10.3 Pattern mixture modelling with MI -- 10.3.1 Missing covariates -- 10.3.2 Sensitivity with multiple variables: the NAR FCS procedure -- 10.3.3 Application to survival analysis -- 10.4 Pattern mixture approach with longitudinal data via MI -- 10.4.1 Change in slope post?deviation -- 10.5 Reference based imputation -- 10.5.1 Constructing joint distributions of pre? and post?intercurrent event data -- 10.5.2 Technical details -- 10.5.3 Software -- 10.5.4 Information anchoring. 327 $a10.6 Approximating a selection model by importance weighting -- 10.6.1 Weighting the imputations -- 10.6.2 Stacking the imputations and applying the weights -- Discussion -- Exercises -- Chapter 11 Multiple imputation for measurement error and misclassification -- 11.1 Introduction -- 11.2 Multiple imputation with validation data -- 11.2.1 Measurement error -- 11.2.2 Misclassification -- 11.2.3 Imputing assuming error is non?differential -- 11.2.4 Non?linear outcome models -- 11.3 Multiple imputation with replication data -- 11.3.1 Measurement error -- 11.3.2 Misclassification -- 11.4 External information on the measurement process -- Discussion -- Exercises -- Chapter 12 Multiple imputation with weights -- 12.1 Using model?based predictions in strata -- 12.2 Bias in the MI variance estimator -- 12.3 MI with weights -- 12.3.1 Conditions for the consistency of & -- bfittheta -- & -- wHat -- MI -- 12.3.2 Conditions for the consistency of V& -- wHat -- MI -- 12.4 A multi?level approach -- 12.4.1 Evaluation of the multi?level multiple imputation approach for handling survey weights -- 12.4.2 Results -- 12.5 Further topics -- 12.5.1 Estimation in domains -- 12.5.2 Two?stage analysis -- 12.5.3 Missing values in the weight model -- Discussion -- Exercises -- Chapter 13 Multiple imputation for causal inference -- 13.1 Multiple imputation for causal inference in point exposure studies -- 13.1.1 Randomised trials -- 13.1.2 Observational studies -- 13.2 Multiple imputation and propensity scores -- 13.2.1 Propensity scores for confounder adjustment -- 13.2.2 Multiple imputation of confounders -- 13.2.3 Imputation model specification -- 13.3 Principal stratification via multiple imputation -- 13.3.1 Principal strata effects -- 13.3.2 Estimation -- 13.4 Multiple imputation for IV analysis -- 13.4.1 Instrumental variable analysis for non?adherence. 327 $a13.4.2 Instrumental variable analysis via multiple imputation. 330 $a"Multiple imputation remains the most widely used methodology for missing data. Since the publication of the first edition, both MI methodology and the range of applications has continued to expand and develop. Methodological advances include extended MI methodologies for multilevel data and causal models, alongside important practical developments in sensitivity analysis. Key practical applications are clinical trials, prognostic modelling and causal modelling. Following on from the first edition, the authors here present the concepts in an intuitive way, setting out the issues raised by missing data, describing the rationale for MI, and show how it can be applied in increasingly complex settings with a range of examples. Also available for the first time are theoretical and computer-based exercises using Stata and R to help the instructor. Multiple Imputation and its Application, Second Edition is aimed at quantitative medical and social researchers by presenting the concepts in an intuitive way, illustrating with a range of examples. Alongside this, inclusion of key mathematical details, and theoretical and computer-based exercises will make the text suitable for graduate teaching and short courses"--$cProvided by publisher. 410 0$aStatistics in practice. 606 $aMedical statistics 606 $aMedicine$xResearch$xStatistical methods 606 $aMultiple imputation (Statistics) 615 0$aMedical statistics. 615 0$aMedicine$xResearch$xStatistical methods. 615 0$aMultiple imputation (Statistics) 676 $a610.724 700 $aCarpenter$b James R.$f1933-$01709301 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830946003321 996 $aMultiple Imputation and Its Application$94098971 997 $aUNINA LEADER 01763nam0 22003131i 450 001 UON00019096 005 20231205102009.674 100 $a20020107d1969 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $aPrehistory and Human Ecology of the Deh Luran Plain$eAn Early Village Sequence from Khuzistan, Iran$fby Frank Hole, Kent V. Flannery, James A. Neely$gPaleoethnobotany by Hans Helbaek$gcontributions by Cyril S. Smith, Colin Renfrew, I.W. Cornwall 210 $aAnn Arbor$cMuseum of Anthropology University of Michigan$d1969 xv$d438 p.$d43 p. di tav.$cill. ; 26 cm 410 1$1001UON00019095$12001 $aMemoirs of the Museum of Anthropology, University of Michigan$1210 $aAnn Arbor$cMuseum of Anthropology, University of Michigan$d1969- v. ; 26 cm$v1 606 $aArcheologia$xIran$xPreistoria e Protostoria$3UONC006825$2FI 606 $aArcheologia$xIran$xSiti$xKhuzestan$3UONC006817$2FI 606 $aArte$xIran$xPreistoria e Protostoria$3UONC006690$2FI 620 $aUS$dAnn Arbor (Michigan)$3UONL000025 686 $aIR X C$cIRAN ANTICO - ARCHEOLOGIA - MONOGRAFIE (MONUMENTI SITI AREE)$2A 700 1$aHOLE$bFrank$3UONV005927$0208849 701 1$aFLANNERY$bKent V.$3UONV013407$0641624 701 1$aNEELY$bJames A.$3UONV013408$0641625 712 $aMuseum of Anthropology, University of Michigan$3UONV247256$4650 801 $aIT$bSOL$c20250530$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00019096 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI IR X C 007 $eSI ARC963 7 007 996 $aPrehistory and Human Ecology of the Deh Luran Plain$91197460 997 $aUNIOR LEADER 01911oam 2200613zu 450 001 9910153296103321 005 20250709204156.0 010 $a9782336669458 010 $a2336669455 035 $a(CKB)3780000000045946 035 $a(SSID)ssj0001193360 035 $a(PQKBManifestationID)12533529 035 $a(PQKBTitleCode)TC0001193360 035 $a(PQKBWorkID)11135861 035 $a(PQKB)10317354 035 $a(FR-PaCSA)88840105 035 $a(FRCYB88840105)88840105 035 $a(EXLCZ)993780000000045946 100 $a20160829d2013 uy 101 0 $afre 135 $aurun| ||||| 181 $ctxt 182 $cc 183 $acr 200 12$aL'art, l'argent et la mondialisation 210 31$a[Place of publication not identified]$cL'Harmattan$d2013 215 $a1 online resource (190 p.) 225 0 $aCollection Logiques sociales. Sâerie Sociologie des arts L'art, l'argent et la mondialisation 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9782343009360 311 08$a2343009368 311 08$a9782296539778 311 08$a2296539777 606 $aArt$xMarketing$vCongresses 606 $aArt and globalization$vCongresses 606 $aVisual Arts$2HILCC 606 $aArt, Architecture & Applied Arts$2HILCC 606 $aVisual Arts - General$2HILCC 615 0$aArt$xMarketing 615 0$aArt and globalization 615 7$aVisual Arts 615 7$aArt, Architecture & Applied Arts 615 7$aVisual Arts - General 700 $aJean-Noël Bret$01243160 702 $aBret$b Jean-Noël 702 $aBret$b Jean-Noèel 702 $aMoureau$b Nathalie 702 $aMoureau$b Nathalie 712 02$aArt, culture et connaissance (Association) 801 0$bPQKB 906 $aBOOK 912 $a9910153296103321 996 $aL'art, l'argent et la mondialisation$92883558 997 $aUNINA LEADER 04022nam 22007335 450 001 9910254047603321 005 20200629171308.0 010 $a3-319-27203-9 024 7 $a10.1007/978-3-319-27203-0 035 $a(CKB)3710000000571663 035 $a(EBL)4207004 035 $a(SSID)ssj0001596991 035 $a(PQKBManifestationID)16297820 035 $a(PQKBTitleCode)TC0001596991 035 $a(PQKBWorkID)14886494 035 $a(PQKB)10990553 035 $a(DE-He213)978-3-319-27203-0 035 $a(MiAaPQ)EBC4207004 035 $a(PPN)19088679X 035 $a(EXLCZ)993710000000571663 100 $a20151222d2016 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 12$aA First Example of a Lyotropic Smectic C* Analog Phase $eDesign, Properties and Chirality Effects /$fby Johanna. R Bruckner 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (130 p.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 300 $a"Doctoral Thesis accepted by the University of Stuttgart, Stuttgart, Germany." 311 $a3-319-27202-0 320 $aIncludes bibliographical references at the end of each chapters. 327 $aIntroduction -- Aims and scope of this thesis -- Thermotropic and lyotropic liquid crystals -- Materials and experimental techniques -- Results and discussion -- Summary -- References -- Appendix A -- Appendix B. 330 $aIn this thesis Johanna Bruckner reports the discovery of the lyotropic counterpart of the thermotropic SmC* phase, which has become famous as the only spontaneously polarized, ferroelectric fluid in nature. By means of polarizing optical microscopy, X-ray diffraction and electro-optic experiments she firmly establishes aspects of the structure of the novel lyotropic liquid crystalline phase and elucidates its fascinating properties, among them a pronounced polar electro-optic effect, analogous to the ferroelectric switching of its thermotropic counterpart. The helical ground state of the mesophase raises the fundamental question of how chiral interactions are "communicated" across layers of more or less disordered and achiral solvent molecules which are located between adjacent bi-layers of the chiral amphiphile molecules. This thesis bridges an important gap between thermotropic and lyotropic liquid crystals and pioneers a new field of liquid crystal research. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aChemistry, Physical and theoretical 606 $aAmorphous substances 606 $aComplex fluids 606 $aAnalytical chemistry 606 $aCrystallography 606 $aPhysical Chemistry$3https://scigraph.springernature.com/ontologies/product-market-codes/C21001 606 $aSoft and Granular Matter, Complex Fluids and Microfluidics$3https://scigraph.springernature.com/ontologies/product-market-codes/P25021 606 $aAnalytical Chemistry$3https://scigraph.springernature.com/ontologies/product-market-codes/C11006 606 $aCrystallography and Scattering Methods$3https://scigraph.springernature.com/ontologies/product-market-codes/P25056 615 0$aChemistry, Physical and theoretical. 615 0$aAmorphous substances. 615 0$aComplex fluids. 615 0$aAnalytical chemistry. 615 0$aCrystallography. 615 14$aPhysical Chemistry. 615 24$aSoft and Granular Matter, Complex Fluids and Microfluidics. 615 24$aAnalytical Chemistry. 615 24$aCrystallography and Scattering Methods. 676 $a530.429 700 $aBruckner$b Johanna. R$4aut$4http://id.loc.gov/vocabulary/relators/aut$01063859 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254047603321 996 $aAnalog Phase$92535092 997 $aUNINA