LEADER 03989nam 22007215 450 001 9910151857903321 005 20200701140747.0 010 $a3-319-43222-2 024 7 $a10.1007/978-3-319-43222-9 035 $a(CKB)3710000000952899 035 $a(DE-He213)978-3-319-43222-9 035 $a(MiAaPQ)EBC4743985 035 $a(PPN)197140637 035 $a(EXLCZ)993710000000952899 100 $a20161115d2016 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 13$aAn Introduction to Transfer Entropy $eInformation Flow in Complex Systems /$fby Terry Bossomaier, Lionel Barnett, Michael Harré, Joseph T. Lizier 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (XXIX, 190 p. 24 illus., 21 illus. in color.) 311 $a3-319-43221-4 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Statistical Preliminaries -- Information Theory -- Transfer Entropy -- Information Transfer in Canonical Systems -- Information Transfer in Financial Markets -- Miscellaneous Applications of Transfer Entropy -- Concluding Remarks. 330 $aThis book considers a relatively new metric in complex systems, transfer entropy, derived from a series of measurements, usually a time series. After a qualitative introduction and a chapter that explains the key ideas from statistics required to understand the text, the authors then present information theory and transfer entropy in depth. A key feature of the approach is the authors' work to show the relationship between information flow and complexity. The later chapters demonstrate information transfer in canonical systems, and applications, for example in neuroscience and in finance. The book will be of value to advanced undergraduate and graduate students and researchers in the areas of computer science, neuroscience, physics, and engineering. 606 $aArtificial intelligence 606 $aApplied mathematics 606 $aEngineering mathematics 606 $aStatistical physics 606 $aDynamical systems 606 $aNeurosciences 606 $aComputers 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 606 $aMathematical and Computational Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T11006 606 $aComplex Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/P33000 606 $aNeurosciences$3https://scigraph.springernature.com/ontologies/product-market-codes/B18006 606 $aTheory of Computation$3https://scigraph.springernature.com/ontologies/product-market-codes/I16005 606 $aStatistical Physics and Dynamical Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/P19090 615 0$aArtificial intelligence. 615 0$aApplied mathematics. 615 0$aEngineering mathematics. 615 0$aStatistical physics. 615 0$aDynamical systems. 615 0$aNeurosciences. 615 0$aComputers. 615 14$aArtificial Intelligence. 615 24$aMathematical and Computational Engineering. 615 24$aComplex Systems. 615 24$aNeurosciences. 615 24$aTheory of Computation. 615 24$aStatistical Physics and Dynamical Systems. 676 $a006.3 700 $aBossomaier$b Terry$4aut$4http://id.loc.gov/vocabulary/relators/aut$062672 702 $aBarnett$b Lionel$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aHarré$b Michael$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aLizier$b Joseph T$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910151857903321 996 $aAn Introduction to Transfer Entropy$92214300 997 $aUNINA