LEADER 02996nam 2200733 450 001 9910467287403321 005 20210924063459.0 010 $a1-68015-766-3 010 $a3-11-037107-3 010 $a3-11-038634-8 024 7 $a10.1515/9783110366471 035 $a(CKB)3880000000003785 035 $a(EBL)1867282 035 $a(SSID)ssj0001537849 035 $a(PQKBManifestationID)11861273 035 $a(PQKBTitleCode)TC0001537849 035 $a(PQKBWorkID)11525835 035 $a(PQKB)11035519 035 $a(MiAaPQ)EBC1867282 035 $a(DE-B1597)428411 035 $a(OCoLC)927947534 035 $a(OCoLC)992518246 035 $a(DE-B1597)9783110366471 035 $a(Au-PeEL)EBL1867282 035 $a(CaPaEBR)ebr11072554 035 $a(CaONFJC)MIL808016 035 $a(OCoLC)913797176 035 $a(EXLCZ)993880000000003785 100 $a20150718h20152015 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aInterfacial phenomena and colloid stability$iIndustrial applications$hVolume 2 /$fTharwat F. Tadros 210 1$aBerlin, Germany ;$aBoston, Massachusetts :$cDe Gruyter,$d2015. 210 4$dİ2015 215 $a1 online resource (418 p.) 225 0 $aInterfacial phenomena and Colloid Stability ;$vVolume 2 300 $aDescription based upon print version of record. 311 $a3-11-036648-7 311 $a3-11-036647-9 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $tFront matter --$tPreface --$tContents --$tGeneral introduction --$t1. Cosmetics and personal care --$t2. Interfacial aspects of pharmaceutical systems --$t3. Interfacial aspects of agrochemical formulations --$t4. Interfacial aspects of paints and coatings --$t5. Interfacial aspects of food colloids --$tIndex 330 $aThis volume provides the knowledge that is essential for the composition of the complex multi-phase systems used varied areas of application. It enables the physical and formulation chemist as well as the chemical engineer in designing the formulation on the basis of a rational approach, and the formulation scientist to better understanding the factors responsible for producing a stable product with optimum application conditions. 606 $aSolid-liquid interfaces 606 $aChemistry, Technical 606 $aColloids$xIndustrial applications 606 $aSurfaces$xAnalysis 608 $aElectronic books. 615 0$aSolid-liquid interfaces. 615 0$aChemistry, Technical. 615 0$aColloids$xIndustrial applications. 615 0$aSurfaces$xAnalysis. 676 $a620.44 686 $aVE 8000$2rvk 700 $aTadros$b Tharwat F.$f1937-$0885066 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910467287403321 996 $aInterfacial phenomena and colloid stability$92459781 997 $aUNINA LEADER 03206oam 2200565I 450 001 9910151566403321 005 20240501162423.0 010 $a1-315-35074-2 010 $a1-315-36774-2 024 7 $a10.1201/9781315367743 035 $a(CKB)3710000000941810 035 $a(MiAaPQ)EBC4745246 035 $a(OCoLC)966385775 035 $a(BIP)70279797 035 $a(BIP)54933649 035 $a(EXLCZ)993710000000941810 100 $a20180331h20172017 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aIterative methods without inversion /$fAnatoly Galperin 205 $a1st ed. 210 1$aBoca Raton, Fla. :$cCRC Press,$d[2017] 210 4$dİ2017 215 $a1 online resource (241 pages) $cillustrations 225 1 $aMonographs and Research Notes in Mathematics 311 08$a1-4987-5892-4 311 08$a1-4987-5896-7 320 $aIncludes bibliographical references and index. 327 $a1. Tools of the trade -- 2. Ulm's method -- 3. Ulm's method without derivatives -- 4. Broyden's method -- 5. Optimal secant updates of low rank -- 6. Optimal secant-type methods -- 7. Majorant generators and their convergence domains. 330 $aIterative Methods without Inversion presents the iterative methods for solving operator equations f (x) = 0 in Banach and/or Hilbert spaces. It covers methods that do not require inversions of f (or solving linearized subproblems). The typical representatives of the class of methods discussed are Ulm's and Broyden's methods. Convergence analyses of the methods considered are based on Kantorovich's majorization principle which avoids unnecessary simplifying assumptions like differentiability of the operator or solvability of the equation. These analyses are carried out under a more general assumption about degree of continuity of the operator than traditional Lipschitz continuity: regular continuity. Key Features The methods discussed are analyzed under the assumption of regular continuity of divided difference operator, which is more general and more flexible than the traditional Lipschitz continuity. An attention is given to criterions for comparison of merits of various methods and to the related concept of optimality of a method of certain class. Many publications on methods for solving nonlinear operator equations discuss methods that involve inversion of linearization of the operator, which task is highly problematic in infinite dimensions. Accessible for anyone with minimal exposure to nonlinear functional analysis. 410 0$aMonographs and research notes in mathematics. 606 $aIterative methods (Mathematics) 606 $aNumerical analysis 606 $aBanach spaces 606 $aHilbert space 615 0$aIterative methods (Mathematics) 615 0$aNumerical analysis. 615 0$aBanach spaces. 615 0$aHilbert space. 676 $a518/.26 700 $aGalperin$b Anatoly$0993227 801 0$bFlBoTFG 801 1$bFlBoTFG 906 $aBOOK 912 $a9910151566403321 996 $aIterative methods without inversion$92274293 997 $aUNINA