LEADER 01087nam0-2200349---450- 001 990009396900403321 005 20110713143944.0 010 $a978-2-7535-0846-0 035 $a000939690 035 $aFED01000939690 035 $a(Aleph)000939690FED01 035 $a000939690 100 $a20110713d2009----km-y0itay50------ba 101 0 $afre 102 $aFR 105 $aa-------001yy 200 1 $a1830, le peuple de Paris$erévolution et représentations sociales$fNathalie Jakobowicz 210 $aRennes$cPresses universitaires de Rennes$d2009 215 $a363 p.$cill.$d24 cm 225 1 $aHistoire 517 1 $aMille huit cent trente, le peuple de Paris 610 0 $aRappresentazioni sociali$aFrancia$aSec. 19. 610 0 $aFrancia$aStoria$aRivoluzione di luglio (1830) 676 $a944.361 700 1$aJakobowicz,$bNathalie$f<1978- >$0325011 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990009396900403321 952 $a944.36 JAK 1$b18208 DFM$fFLFBC 959 $aFLFBC 996 $a1830, le peuple de Paris$9763699 997 $aUNINA LEADER 03686nam 22005535 450 001 9910150526403321 005 20220407182526.0 010 $a981-10-2842-7 024 7 $a10.1007/978-981-10-2842-7 035 $a(CKB)3710000000943924 035 $a(DE-He213)978-981-10-2842-7 035 $a(MiAaPQ)EBC4737166 035 $a(PPN)197138926 035 $a(EXLCZ)993710000000943924 100 $a20161108d2016 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aExact boundary controllability of nodal profile for quasilinear hyperbolic systems /$fby Tatsien Li, Ke Wang, Qilong Gu 205 $a1st ed. 2016. 210 1$aSingapore :$cSpringer Singapore :$cImprint: Springer,$d2016. 215 $a1 online resource (IX, 108 p. 27 illus.) 225 1 $aSpringerBriefs in Mathematics,$x2191-8198 311 $a981-10-2841-9 320 $aIncludes bibliographical references and index. 327 $aFirst Order Quasilinear Hyperbolic Systems -- Quasilinear Wave Equations -- Semi-global Piecewise Classical Solutions on a Tree-like Network -- Exact Boundary Controllability of Nodal Prole for 1-D First Order Quasilinear Hyperbolic Systems -- Exact Boundary Controllability of Nodal Prole for 1-D First Order Quasilinear Hyperbolic Systems on a Tree-like Network -- Exact Boundary Controllability of Nodal Prole for 1-D Quasilinear Wave Equations -- Exact Boundary Controllability of Nodal Prole for 1-D Quasilinear Wave Equations on a Planar Tree-like Network of Strings. 330 $aThis book provides a comprehensive overview of the exact boundary controllability of nodal profile, a new kind of exact boundary controllability stimulated by some practical applications. This kind of controllability is useful in practice as it does not require any precisely given final state to be attained at a suitable time t=T by means of boundary controls, instead it requires the state to exactly fit any given demand (profile) on one or more nodes after a suitable time t=T by means of boundary controls. In this book we present a general discussion of this kind of controllability for general 1-D first order quasilinear hyperbolic systems and for general 1-D quasilinear wave equations on an interval as well as on a tree-like network using a modular-structure construtive method, suggested in LI Tatsien's monograph "Controllability and Observability for Quasilinear Hyperbolic Systems"(2010), and we establish a complete theory on the local exact boundary controllability of nodal profile for 1-D quasilinear hyperbolic systems. 410 0$aSpringerBriefs in Mathematics,$x2191-8198 606 $aSystem theory 606 $aDifferential equations, Partial 606 $aSystems Theory, Control$3https://scigraph.springernature.com/ontologies/product-market-codes/M13070 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 615 0$aSystem theory. 615 0$aDifferential equations, Partial. 615 14$aSystems Theory, Control. 615 24$aPartial Differential Equations. 676 $a510 700 $aLi$b Tatsien$4aut$4http://id.loc.gov/vocabulary/relators/aut$0755910 702 $aWang$b Ke$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aGu$b Qilong$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910150526403321 996 $aExact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems$91991477 997 $aUNINA