LEADER 00887nam0-22003011i-450- 001 990001877350403321 005 20021010 035 $a000187735 035 $aFED01000187735 035 $a(Aleph)000187735FED01 035 $a000187735 100 $a20021010d--------km-y0itay50------ba 101 0 $aita 200 1 $aConfronti economici sull' impianto della vigna in Puglia$fMarco Boldi. 210 $aRoma$c...$d1888. 215 $a17 p.$d25 cm 300 $aEstr. da: Bullettino della Societa Generale dei Viticoltori italiani, 3(4),1888 610 0 $aViticoltura 676 $a634.8 700 1$aBoldi,$bMarco$09076 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001877350403321 952 $a60 MISC. B 170/4$b$fFAGBC 959 $aFAGBC 996 $aConfronti economici sull' impianto della vigna in Puglia$9400315 997 $aUNINA DB $aING01 LEADER 03127nam 22005295 450 001 9910150446703321 005 20220404215112.0 010 $a3-319-46358-6 024 7 $a10.1007/978-3-319-46358-2 035 $a(CKB)3710000000943228 035 $a(DE-He213)978-3-319-46358-2 035 $a(MiAaPQ)EBC4738835 035 $a(PPN)197139019 035 $a(EXLCZ)993710000000943228 100 $a20161109d2017 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGeodetic boundary value problem: the equivalence between Molodensky?s and Helmert?s solutions /$fby Fernando Sansò, Michael G. Sideris 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (V, 81 p. 13 illus., 2 illus. in color.) 225 1 $aSpringerBriefs in Earth Sciences,$x2191-5369 311 $a3-319-46357-8 320 $aIncludes bibliographical references at the end each chapters. 330 $aThis book offers a new approach to interpreting the geodetic boundary value problem, successfully obtaining the solutions of the Molodensky and Stokes boundary value problems (BVPs) with the help of downward continuation (DC) based methods. Although DC is known to be an improperly posed operation, classical methods seem to provide numerically sensible results, and therefore it can be concluded that such classical methods must in fact be manifestations of different, mathematically sound approaches. Here, the authors first prove the equivalence of Molodensky?s and Stoke's approaches with Helmert?s reduction in terms of both BVP formulation and BVP solutions by means of the DC method. They then go on to show that this is not merely a downward continuation operation, and provide more rigorous interpretations of the DC approach as a change of boundary approach and as a pseudo BVP solution approach. 410 0$aSpringerBriefs in Earth Sciences,$x2191-5369 606 $aGeophysics 606 $aMathematical physics 606 $aGeophysics/Geodesy$3https://scigraph.springernature.com/ontologies/product-market-codes/G18009 606 $aMathematical Applications in the Physical Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/M13120 606 $aGeophysics and Environmental Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P32000 615 0$aGeophysics. 615 0$aMathematical physics. 615 14$aGeophysics/Geodesy. 615 24$aMathematical Applications in the Physical Sciences. 615 24$aGeophysics and Environmental Physics. 676 $a550 676 $a526.1 700 $aSansò$b Fernando$4aut$4http://id.loc.gov/vocabulary/relators/aut$0422254 702 $aSideris$b Michael G$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910150446703321 996 $aGeodetic Boundary Value Problem: the Equivalence between Molodensky?s and Helmert?s Solutions$92500549 997 $aUNINA