LEADER 13350nam 2200637 450 001 9910150222303321 005 20230802002853.0 010 $a1-283-59144-8 010 $a0-273-74278-7 010 $a9786613903891 035 $a(CKB)3360000000434777 035 $a(SSID)ssj0000759596 035 $a(PQKBManifestationID)12304293 035 $a(PQKBTitleCode)TC0000759596 035 $a(PQKBWorkID)10784277 035 $a(PQKB)10575921 035 $a(MiAaPQ)EBC5173737 035 $a(MiAaPQ)EBC5175707 035 $a(MiAaPQ)EBC5138048 035 $a(MiAaPQ)EBC5483690 035 $a(Au-PeEL)EBL5138048 035 $a(OCoLC)823772607 035 $a(EXLCZ)993360000000434777 100 $a20190326d2012 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aInorganic chemistry /$fCatherine E. Housecroft and Alan G. Sharpe 205 $a4th ed 210 1$aHarlow, England :$cPearson,$d2012. 215 $a1 online resource (1,215 pages) $ccolor illustrations 300 $aIncludes index. 311 $a0-273-74275-2 320 $aIncludes bibliographical references at the end of each chapters. 327 $aCover -- Summary of contents -- Contents -- Guided tour -- Preface to the fourth edition -- Acknowledgements -- Basic concepts: atoms -- Introduction -- Inorganic chemistry: it is not an isolated branch of chemistry -- The aims of Chapters 1 and 2 -- Fundamental particles of an atom -- Atomic number, mass number and isotopes -- Nuclides, atomic number and mass number -- Relative atomic mass -- Isotopes -- Successes in early quantum theory -- Some important successes of classical quantum theory -- Bohr's theory of the atomic spectrum of hydrogen -- An introduction to wave mechanics -- The wave-nature of electrons -- The uncertainty principle -- The Schro?dinger wave equation -- Atomic orbitals -- The quantum numbers n, l and ml -- The radial part of the wavefunction, R(r) -- The radial distribution function, 4?r2R(r)2 -- The angular part of the wavefunction, A(?, ?) -- Orbital energies in a hydrogen-like species -- Size of orbitals -- The spin quantum number and the magnetic spin quantum number -- The ground state of the hydrogen atom -- Many-electron atoms -- The helium atom: two electrons -- Ground state electronic configurations: experimental data -- Penetration and shielding -- The periodic table -- The aufbau principle -- Ground state electronic configurations -- Valence and core electrons -- Diagrammatic representations of electronic configurations -- Ionization energies and electron affinities -- Ionization energies -- Electron affinities -- Basic concepts: molecules -- Bonding models: an introduction -- A historical overview -- Lewis structures -- Homonuclear diatomic molecules: valence bond (VB) theory -- Uses of the term -- Covalent bond distance, covalent radius and van der Waals radius -- The valence bond (VB) model of bonding in H2 -- The valence bond (VB) model applied to F2 , O2 and N2. 327 $aHomonuclear diatomic molecules: molecular orbital (MO) theory -- An overview of the MO model -- Molecular orbital theory applied to the bonding in H2 -- The bonding in He2, Li2 and Be2 -- The bonding in F2 and O2 -- What happens if the s-p separationis small? -- The octet rule and isoelectronic species -- The octet rule: first row p-block elements -- Isoelectronic species -- The octet rule: heavier p-block elements -- Electronegativity values -- Pauling electronegativity values, Xp -- Mulliken electronegativity values,Xm -- Allred-Rochow electronegativity values, Xar -- Electronegativity: final remarks -- Dipole moments -- Polar diatomic molecules -- Molecular dipole moments -- MO theory: heteronuclear diatomic molecules -- Which orbital interactions should be considered? -- Hydrogen fluoride -- Carbon monoxide -- Molecular shape and the VSEPR model -- Valence-shell electron-pair repulsion model -- Structures derived from a trigonal bipyramid -- Limitations of the VSEPR model -- Molecular shape: stereoisomerism -- Square planar species -- Octahedral species -- Trigonal bipyramidal species -- High coordination numbers -- Double bonds -- Introduction to molecular symmetry -- Introduction -- Symmetry operations and symmetry elements -- Rotation about an n-fold axis of symmetry -- Reflection through a plane of symmetry (mirror plane) -- Reflection through a centre of symmetry (inversion centre) -- Rotation about an axis, followed by reflection through a plane perpendicular to this axis -- Identity operator -- Successive operations -- Point groups -- C1 point group -- C?v point group -- D?h point group -- Td, Oh or Ih point groups -- Determining the point group of a molecule or molecular ion -- Character tables: an introduction -- Why do we need to recognize symmetry elements? -- Vibrational spectroscopy. 327 $aHow many vibrational modes are there for a given molecular species? -- Selection rules for an infrared or Raman active mode of vibration -- Linear (D?h or C?v) and bent (C2v) triatomic molecules -- Bent molecules XY2: using the C2v character table -- XY3 molecules with D3h symmetry -- XY3 molecules with C3v symmetry -- XY4 molecules with Td or D4h symmetry -- XY6 molecules with Oh symmetry -- Metal carbonyl complexes, M(CO)n -- Metal carbonyl complexes M(CO)6-nXn -- Observing IR spectroscopic absorptions -- Chiral molecules -- Experimental techniques -- Introduction -- Separation and purification techniques -- Gas chromatography (GC) -- Liquid chromatography (LC) -- High-performance liquid chromatography (HPLC) -- Recrystallization -- Elemental analysis -- CHN analysis by combustion -- Atomic absorption spectroscopy (AAS) -- Compositional analysis: thermogravimetry (TG) -- Mass spectrometry -- Electron ionization (EI) -- Fast atom bombardment (FAB) -- Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) -- Electrospray ionization (ESI) -- Infrared and Raman spectroscopies -- Energies and wavenumbers of molecular vibrations -- The Fourier transform infrared (FT-IR) spectrometer and sample preparation -- Diagnostic absorptions -- Deuterium/hydrogen exchange -- Raman spectroscopy -- Electronic spectroscopy -- UV-VIS absorption spectroscopy -- Types of absorption -- Absorbance and the Beer-Lambert law -- Emission spectroscopy -- Nuclear magnetic resonance (NMR) spectroscopy -- NMR active nuclei and isotope abundance -- Which nuclei are suitable for NMR spectroscopic studies? -- Resonance frequencies and chemical shifts -- Chemical shift ranges -- Solvents for solution studies -- Integration of signals and signal broadening -- Homonuclear spin-spin coupling: 1H-1H -- Heteronuclear spin-spin coupling: 13C-1H -- Case studies. 327 $aStereochemically non-rigid species -- Exchange processes in solution -- Electron paramagnetic resonance (EPR) spectroscopy -- What is EPR spectroscopy? -- The Zeeman electronic effect -- EPR spectra -- Mo?ssbauer spectroscopy -- The technique of Mo?ssbauer spectroscopy -- What can isomer shift data tell us? -- Structure determination: diffraction methods -- X-ray diffraction (XRD) -- Single crystal X-ray diffraction -- Powder X-ray diffraction -- Single crystal neutron diffraction -- Electron diffraction -- Low-energy electron diffraction (LEED) -- Structural databases -- Photoelectron spectroscopy (PES, UPS, XPS, ESCA) -- Computational methods -- Hartree-Fock theory -- Density functional theory -- Hu¨ckel MO theory -- Molecular mechanics (MM) -- Bonding in polyatomic molecules -- Introduction -- Valence bond theory: hybridization of atomic orbitals -- What is orbital hybridization? -- sp Hybridization: a scheme for linear species -- sp2 Hybridization: a scheme for trigonal planar species -- sp3 Hybridization: a scheme for tetrahedral and related species -- Other hybridization schemes -- Valence bond theory: multiple bonding in polyatomic molecules -- C2H4 -- HCN -- BF3 -- Molecular orbital theory: the ligand group orbital approach and application to triatomic molecules -- Molecular orbital diagrams: moving from a diatomic to polyatomic species -- MO approach to bonding in linear XH2: symmetry matching by inspection -- MO approach to bonding in linear XH2: working from molecular symmetry -- A bent triatomic: H2O -- Molecular orbital theory applied to the polyatomic molecules BH3, NH3 and CH4 -- BH3 -- NH3 -- CH4 -- A comparison of the MO and VB bonding models -- Molecular orbital theory: bonding analyses soon become complicated -- Molecular orbital theory: learning to use the theory objectively -- ?-Bonding in CO2 -- [NO3]? -- SF6. 327 $aThree-centre two-electron interactions -- A more advanced problem: B2H6 -- Structures and energetics of metallic and ionic solids -- Introduction -- Packing of spheres -- Cubic and hexagonal close-packing -- The unit cell: hexagonal and cubic close-packing -- Interstitial holes: hexagonal and cubic close-packing -- Non-close-packing: simple cubic and body-centred cubic arrays -- The packing-of-spheres model applied to the structures of elements -- Group 18 elements in the solid state -- H2 and F2 in the solid state -- Metallic elements in the solid state -- Polymorphism in metals -- Polymorphism: phase changes in the solid state -- Phase diagrams -- Metallic radii -- Melting points and standard enthalpies of atomization of metals -- Alloys and intermetallic compounds -- Substitutional alloys -- Interstitial alloys -- Intermetallic compounds -- Bonding in metals and semiconductors -- Electrical conductivity and resistivity -- Band theory of metals and insulators -- The Fermi level -- Band theory of semiconductors -- Semiconductors -- Intrinsic semiconductors -- Extrinsic (n-and p-type) semiconductors -- Sizes of ions -- Ionic radii -- Periodic trends in ionic radii -- Ionic lattices -- The rock salt (NaCl) structure type -- The caesium chloride (CsCl) structure type -- The fluorite (CaF2) structure type -- The antifluorite structure type -- The zinc blende (ZnS) structure type: a diamondtype network -- The cristobalite (SiO2) structure type -- The wurtzite (ZnS) structure type -- The rutile (TiO2) structure type -- CdI2 and CdCl2: layer structures -- The perovskite (CaTiO3) structure type: a double oxide -- Crystal structures of semiconductors -- Lattice energy: estimates from an electrostatic model -- Coulombic attraction within an isolated ion-pair -- Coulombic interactions in an ionic lattice -- Born forces -- The Born-Lande´ equation. 327 $aMadelung constants. 330 $aNow in its fourth edition, Housecroft & Sharpe's Inorganic Chemistry is a well-respected and leading international textbook. Inorganic Chemistry is primarily designed to be a student text but is well-received as a reference book for those working in the field of inorganic chemistry.  Inorganic Chemistry provides both teachers and students with a clearly written and beautifully-illustrated introduction to core physical-inorganic principles. It introduces the descriptive chemistry of the elements and the role played by inorganic chemistry in our everyday lives. Chapters on catalysis and industrial processes, bioinorganic chemistry, and inorganic materials and nanotechnology include many of the latest advances in these fields. There is a new chapter on experimental techniques, and the large number of worked examples, exercises and end-of-chapter problems illustrate a broad range of their applications in inorganic chemistry. The striking full-colour design includes a wealth of three-dimensional molecular and protein structures and photographs, enticing students to delve into the world of inorganic chemistry. Throughout its four editions, Inorganic Chemistry has successfully given both teachers and students the tools with which to approach the subject confidently and with enjoyment. Environmental issues linked to inorganic chemistry, topics relating inorganic chemistry to biology and medicine, and the applications of inorganic chemicals in the laboratory, industry and daily life form the basis of a wide range of topic boxes in the book, helping students to appreciate the importance and relevance of the subject.   A strong pedagogic approach is at the heart of Inorganic Chemistry. While worked examples take students through calculations and exercises step by step, the sets of self-study exercises and end-of-chapter 330 8 $aproblems  reinforce learning and  develop subject knowledge and skills. The end-of-chapter problems include sets of 'overview problems', and problems entitled 'inorganic chemistry matters' which use everyday material to illustrate the relevance of the material in each chapter. Definitions panels and end-of-chapter checklists offer students excellent revision aids. Further reading suggestions, from topical articles to recent literature papers, encourage students to explore topics in more depth. 606 $aChemistry, Inorganic$vTextbooks 615 0$aChemistry, Inorganic 676 $a546 700 $aHousecroft$b Catherine E.$f1955-$080497 702 $aSharpe$b A. G. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910150222303321 996 $aInorganic chemistry$92881126 997 $aUNINA