LEADER 11172oam 2200553 450 001 9910150213203321 005 20230803021722.0 010 $a9780273785927 (e-book) 010 $a9780273785910 (pbk.) 035 $a(MiAaPQ)EBC5173507 035 $a(MiAaPQ)EBC5176102 035 $a(MiAaPQ)EBC5137531 035 $a(MiAaPQ)EBC5833695 035 $a(Au-PeEL)EBL5137531 035 $a(CaONFJC)MIL523718 035 $a(OCoLC)1024279871 035 $a(EXLCZ)992550000001120336 100 $a20210429d2013 uy 0 101 0 $aeng 135 $aurcn|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aWater-resources engineering /$fDavid A. Chin 205 $aThird, international edition. 210 1$aBoston :$cPearson,$d[2013] 210 4$d©2013 215 $a1 online resource (957 p.) $cill 225 1 $aAlways learning 300 $aAdapted from United States edition. 320 $aIncludes bibliographical references and index. 327 $aCover -- Contents -- Preface -- 1 Introduction -- 1.1 Water-Resources Engineering -- 1.2 The Hydrologic Cycle -- 1.3 Designof Water-Resource Systems -- 1.3.1 Water-Control Systems -- 1.3.2 Water-Use Systems -- 1.3.3 Supporting Federal Agencies in the United States -- Problem -- 2 Fundamentals of Flow in Closed Conduits -- 2.1 Introduction -- 2.2 Single Pipelines -- 2.2.1 Steady-State Continuity Equation -- 2.2.2 Steady-State Momentum Equation -- 2.2.3 Steady-State Energy Equation -- 2.2.3.1 Energy and hydraulic grade lines -- 2.2.3.2 Velocity profile -- 2.2.3.3 Head losses in transitions and fittings -- 2.2.3.4 Head losses in noncircular conduits -- 2.2.3.5 Empirical friction-loss formulae -- 2.2.4 Water Hammer -- 2.3 Pipe Networks -- 2.3.1 Nodal Method -- 2.3.2 Loop Method -- 2.3.3 Application of Computer Programs -- 2.4 Pumps -- 2.4.1 AffinityLaws -- 2.4.2 Pump Selection -- 2.4.2.1 Commercially available pumps -- 2.4.2.2 System characteristics -- 2.4.2.3 Limits on pump location -- 2.4.3 Multiple-Pump Systems -- 2.4.4 Variable-Speed Pumps -- Problems -- 3 Design of Water-Distribution Systems -- 3.1 Introduction -- 3.2 Water Demand -- 3.2.1 Per-Capita Forecast Model -- 3.2.1.1 Estimation of per-capita demand -- 3.2.1.2 Estimation of population -- 3.2.2 Temporal Variations in Water Demand -- 3.2.3 Fire Demand -- 3.2.4 Design Flows -- 3.3 Components of Water-Distribution Systems -- 3.3.1 Pipelines -- 3.3.1.1 Minimumsize -- 3.3.1.2 Service lines -- 3.3.1.3 Pipe materials -- 3.3.2 Pumps -- 3.3.3 Valves -- 3.3.4 Meters -- 3.3.5 Fire Hydrants -- 3.3.6 Water-Storage Reservoirs -- 3.4 Performance Criteria for Water-Distribution Systems -- 3.4.1 Service Pressures -- 3.4.2 Allowable Velocities -- 3.4.3 Water Quality -- 3.4.4 Network Analysis -- 3.5 Building Water-Supply Systems -- 3.5.1 Specification of Design Flows. 327 $a3.5.2 Specification of Minimum Pressures -- 3.5.3 Determination of Pipe Diameters -- Problems -- 4 Fundamentals of Flow in Open Channels -- 4.1 Introduction -- 4.2 Basic Principles -- 4.2.1 Steady-State Continuity Equation -- 4.2.2 Steady-State Momentum Equation -- 4.2.2.1 Darcy-Weisbach equation -- 4.2.2.2 Manning equation -- 4.2.2.3 Other equations -- 4.2.2.4 Velocity distribution -- 4.2.3 Steady-State Energy Equation -- 4.2.3.1 Energy grade line -- 4.2.3.2 Specific energy -- 4.3 Water-Surface Profiles -- 4.3.1 Profile Equation -- 4.3.2 Classification of Water-Surface Profiles -- 4.3.3 Hydraulic Jump -- 4.3.4 Computation of Water-Surface Profiles -- 4.3.4.1 Direct-integration method -- 4.3.4.2 Direct-step method -- 4.3.4.3 Standard-step method -- 4.3.4.4 Practical considerations -- 4.3.4.5 Profiles across bridges -- Problems -- 5 Design of Drainage Channels -- 5.1 Introduction -- 5.2 Basic Principles -- 5.2.1 Best Hydraulic Section -- 5.2.2 Boundary Shear Stress -- 5.2.3 Cohesive versus Noncohesive Materials -- 5.2.4 Bends -- 5.2.5 Channel Slopes -- 5.2.6 Freeboard -- 5.3 Design of Channels with Rigid Linings -- 5.4 Design of Channels with Flexible Linings -- 5.4.1 General Design Procedure -- 5.4.2 Vegetative Linings and Bare Soil -- 5.4.3 RECP Linings -- 5.4.4 Riprap, Cobble, and Gravel Linings -- 5.4.5 Gabions -- 5.5 CompositeLinings -- Problems -- 6 Design of Sanitary Sewers -- 6.1 Introduction -- 6.2 Quantity of Wastewater -- 6.2.1 Residential Sources -- 6.2.2 Nonresidential Sources -- 6.2.3 Inflow and Infiltration (I/I) -- 6.2.4 Peaking Factors -- 6.3 Hydraulics of Sewers -- 6.3.1 Manning Equation with Constant n -- 6.3.2 Manning Equation with Variable n -- 6.3.3 Self-Cleansing -- 6.3.4 Scour Prevention -- 6.3.5 Design Computations for Diameter and Slope -- 6.3.6 Hydraulics of Manholes -- 6.4 System Design Criteria -- 6.4.1 System Layout. 327 $a6.4.2 Pipe Material -- 6.4.3 Depth of Sanitary Sewer -- 6.4.4 Diameter and Slope of Pipes -- 6.4.5 Hydraulic Criteria -- 6.4.6 Manholes -- 6.4.7 Pump Stations -- 6.4.8 Force Mains -- 6.4.9 Hydrogen-Sulfide Control -- 6.4.10 Combined Sewers -- 6.5 Design Computations -- 6.5.1 Design Aids -- 6.5.1.1 Manning's n -- 6.5.1.2 Minimum slope for self-cleansing -- 6.5.2 Procedure for System Design -- Problems -- 7 Design of Hydraulic Structures -- 7.1 Introduction -- 7.2 Culverts -- 7.2.1 Hydraulics -- 7.2.1.1 Submerged entrances -- 7.2.1.2 Unsubmerged entrances -- 7.2.2 Design Constraints -- 7.2.3 Sizing Calculations -- 7.2.3.1 Fixed-headwater method -- 7.2.3.2 Fixed-flow method -- 7.2.3.3 Minimum-performance method -- 7.2.4 Roadway Overtopping -- 7.2.5 Riprap/Outlet Protection -- 7.3 Gates -- 7.3.1 Free Discharge -- 7.3.2 Submerged Discharge -- 7.3.3 Empirical Equations -- 7.4 Weirs -- 7.4.1 Sharp-Crested Weirs -- 7.4.1.1 Rectangular weirs -- 7.4.1.2 V-notchweirs -- 7.4.1.3 Compound weirs -- 7.4.1.4 Other types of sharp-crested weirs -- 7.4.2 Broad-Crested Weirs -- 7.4.2.1 Rectangular weirs -- 7.4.2.2 Compound weirs -- 7.4.2.3 Gabionweirs -- 7.5 Spillways -- 7.5.1 Uncontrolled Spillways -- 7.5.2 Controlled (Gated) Spillways -- 7.5.2.1 Gates seated on the spillway crest -- 7.5.2.2 Gates seated downstream of the spillway crest -- 7.6 Stilling Basins -- 7.6.1 Type Selection -- 7.6.2 Design Procedure -- 7.7 Dams and Reservoirs -- 7.7.1 Types of Dams -- 7.7.2 Reservoir Storage -- 7.7.2.1 Sediment accumulation -- 7.7.2.2 Determination of storage requirements -- 7.7.3 Hydropower -- 7.7.3.1 Turbines -- 7.7.3.2 Turbine performance -- 7.7.3.3 Feasibility of hydropower -- Problems -- 8 Probability and Statistics in Water-Resources Engineering -- 8.1 Introduction -- 8.2 Probability Distributions -- 8.2.1 Discrete Probability Distributions. 327 $a8.2.2 Continuous Probability Distributions -- 8.2.3 Mathematical Expectation and Moments -- 8.2.4 Return Period -- 8.2.5 Common Probability Functions -- 8.2.5.1 Binomial distribution -- 8.2.5.2 Geometric distribution -- 8.2.5.3 Poisson distribution -- 8.2.5.4 Exponential distribution -- 8.2.5.5 Gamma/Pearson Type III distribution -- 8.2.5.6 Normal distribution -- 8.2.5.7 Log-normal distribution -- 8.2.5.8 Uniform distribution -- 8.2.5.9 Extreme-value distributions -- 8.2.5.10 Chi-square distribution -- 8.3 Analysis of Hydrologic Data -- 8.3.1 Estimation of Population Distribution -- 8.3.1.1 Probability distribution of observed data -- 8.3.1.2 Hypothesis tests -- 8.3.1.3 Model selection criteria -- 8.3.2 Estimation of Population Parameters -- 8.3.2.1 Method of moments -- 8.3.2.2 Maximum-likelihood method -- 8.3.2.3 Method of L-moments -- 8.3.3 Frequency Analysis -- 8.3.3.1 Normal distribution -- 8.3.3.2 Log-normal distribution -- 8.3.3.3 Gamma/Pearson Type III distribution -- 8.3.3.4 Log-Pearson Type III distribution -- 8.3.3.5 Extreme-value Type I distribution -- 8.3.3.6 General extreme-value (GEV) distribution -- 8.4 Uncertainty Analysis -- Problems -- 9 Fundamentals of Surface-Water Hydrology I: Rainfall and Abstractions -- 9.1 Introduction -- 9.2 Rainfall -- 9.2.1 Measurement of Rainfall -- 9.2.2 Statistics of Rainfall Data -- 9.2.2.1 Rainfall statistics in the United States -- 9.2.2.2 Secondary estimation of IDF curves -- 9.2.3 Spatial Averaging and Interpolation of Rainfall -- 9.2.4 Design Rainfall -- 9.2.4.1 Return period -- 9.2.4.2 Rainfall duration -- 9.2.4.3 Rainfall depth -- 9.2.4.4 Temporal distribution -- 9.2.4.5 Spatial distribution -- 9.2.5 Extreme Rainfall -- 9.2.5.1 Rational estimation method -- 9.2.5.2 Statistical estimation method -- 9.2.5.3 World-record precipitation amounts -- 9.2.5.4 Probable maximum storm. 327 $a9.3 Rainfall Abstractions -- 9.3.1 Interception -- 9.3.2 Depression Storage -- 9.3.3 Infiltration -- 9.3.3.1 The infiltration process -- 9.3.3.2 Horton model -- 9.3.3.3 Green-Ampt model -- 9.3.3.4 NRCS curve-number model -- 9.3.3.5 Comparison of infiltration models -- 9.3.4 Rainfall Excess on Composite Areas -- 9.4 Baseflow -- Problems -- 10 Fundamentals of Surface-Water Hydrology II: Runoff -- 10.1 Introduction -- 10.2 Mechanisms of Surface Runoff -- 10.3 Time of Concentration -- 10.3.1 Overland Flow -- 10.3.1.1 Kinematic-wave equation -- 10.3.1.2 NRCS method -- 10.3.1.3 Kirpich equation -- 10.3.1.4 Izzard equation -- 10.3.1.5 Kerby equation -- 10.3.2 Channel Flow -- 10.3.3 Accuracy of Estimates -- 10.4 Peak-Runoff Models -- 10.4.1 The Rational Method -- 10.4.2 NRCS-TR55 Method -- 10.5 Continuous-Runoff Models -- 10.5.1 Unit-Hydrograph Theory -- 10.5.2 Instantaneous Unit Hydrograph -- 10.5.3 Unit-Hydrograph Models -- 10.5.3.1 Snyder unit-hydrograph model -- 10.5.3.2 NRCS dimensionless unit hydrograph -- 10.5.3.3 Accuracy of unit-hydrograph models -- 10.5.4 Time-Area Models -- 10.5.5 Kinematic-Wave Model -- 10.5.6 Nonlinear-Reservoir Model -- 10.5.7 Santa Barbara Urban Hydrograph Model -- 10.5.8 Extreme Runoff Events -- 10.6 Routing Models -- 10.6.1 Hydrologic Routing -- 10.6.1.1 Modified Puls method -- 10.6.1.2 Muskingum method -- 10.6.2 Hydraulic Routing -- 10.7 Water-Quality Models -- 10.7.1 Event-Mean Concentrations -- 10.7.2 Regression Equations -- 10.7.2.1 USGS model -- 10.7.2.2 EPA model -- Problems -- 11 Design of Stormwater-Collection Systems -- 11.1 Introduction -- 11.2 Street Gutters -- 11.3 Inlets -- 11.3.1 CurbInlets -- 11.3.2 Grate Inlets -- 11.3.3 Combination Inlets -- 11.3.4 Slotted Inlets -- 11.4 Roadside and Median Channels -- 11.5 Storm Sewers -- 11.5.1 Calculation of Design Flow Rates -- 11.5.2 Pipe Sizing and Selection. 327 $a11.5.3 Manholes. 330 $aWater-Resources Engineering provides comprehensive coverage of hydraulics, hydrology, and water-resources planning and management. Presented from first principles, the material is rigorous, relevant to the practice of water resources engineering, and reinforced by detailed presentations of design applications. Prior knowledge of fluid mechanics and calculus (up to differential equations) is assumed. 410 0$aAlways learning. 606 $aHydraulics 615 0$aHydraulics. 676 $a627 700 $aChin$b David A.$0274000 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bUtOrBLW 912 $a9910150213203321 996 $aWater-resources engineering$93411404 997 $aUNINA LEADER 02348nas 22007093a 450 001 996336151503316 005 20230710213019.0 011 $a2163-2294 035 $a(OCoLC)60616020 035 $a(CKB)110984073529272 035 $a(CONSER)--2011202359 035 $a(EXLCZ)99110984073529272 100 $a20050614a19989999 s-- a 101 0 $aeng 135 $aurun||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe Presidency /$fAmerican Council on Education 210 $aWashington, DC $cAmerican Council on Education 215 $a1 online resource (volumes) 300 $a"The magazine for higher education leaders." 311 $a1099-3681 531 $aPRESIDENCY 606 $aUniversities and colleges$xAdministration$vPeriodicals 606 $aCollege presidents$zUnited States$vPeriodicals 606 $aEnseignement supérieur$zÉtats-Unis$vPériodiques 606 $aUniversités$zÉtats-Unis$xAdministration$vPériodiques 606 $aPrésidents et recteurs d'université$zÉtats-Unis$vPériodiques 606 $aLeadership en éducation$zÉtats-Unis$vPériodiques 606 $aCollege presidents$2fast$3(OCoLC)fst00867876 606 $aUniversities and colleges$xAdministration$2fast$3(OCoLC)fst01161604 606 $aHochschule$2gnd 606 $aManagement$2gnd 606 $aZeitschrift$2gnd 606 $aHochschule$2swd 606 $aManagement$2swd 606 $aZeitschrift$2swd 607 $aUnited States$2fast 607 $aUSA$2swd 608 $aPeriodicals.$2fast 608 $aPeriodicals.$2lcgft 615 0$aUniversities and colleges$xAdministration 615 0$aCollege presidents 615 6$aEnseignement supérieur 615 6$aUniversités$xAdministration 615 6$aPrésidents et recteurs d'université 615 6$aLeadership en éducation 615 7$aCollege presidents. 615 7$aUniversities and colleges$xAdministration. 615 7$aHochschule. 615 7$aManagement. 615 7$aZeitschrift. 615 07$aHochschule. 615 07$aManagement. 615 07$aZeitschrift. 676 $a378 712 02$aAmerican Council on Education. 906 $aJOURNAL 912 $a996336151503316 996 $aThe Presidency$92369030 997 $aUNISA LEADER 03704nam 2200781Ia 450 001 9910972751703321 005 20250821202559.0 010 $a1-282-94460-6 010 $a9786612944604 010 $a92-4-068578-2 035 $a(CKB)2670000000069459 035 $a(EBL)631709 035 $a(OCoLC)696604862 035 $a(SSID)ssj0000469925 035 $a(PQKBManifestationID)11280855 035 $a(PQKBTitleCode)TC0000469925 035 $a(PQKBWorkID)10531813 035 $a(PQKB)11540771 035 $a(MiAaPQ)EBC631709 035 $a(Au-PeEL)EBL631709 035 $a(CaPaEBR)ebr10438045 035 $a(CaONFJC)MIL294460 035 $a(EXLCZ)992670000000069459 100 $a20101221d2010 uf 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHidden cities $eunmasking and overcoming health inequities in urban settings 205 $a1st ed. 210 $a[Kobe, Japan] $cWorld Health Organization $cUN-HABITAT$dc2010 215 $a1 online resource (144 p.) 300 $aProduced by the World Health Organization, The WHO Centre for Health Development, Kobe, and United Nations Human Settlements Programme (UN-HABITAT), 2010. 311 08$a92-4-154803-7 311 08$aPrint version: World Health Organization. Centre for Health Development. Hidden cities. [Kobe, Japan] : World Health Organization ; UN-HABITAT, ©2010 9789241548038 (OCoLC)688501538 320 $aIncludes bibliographical references. 327 $aCover; Copyright; ACKNOWLEDGEMENTS; CONTENTS; FOREWORDS; EXECUTIVE SUMMARY; CHAPTER 1: THE RISE OF MODERN CITIES; CHAPTER 2: HEALTH IN AN URBAN CONTEXT; CHAPTER 3: URBAN HEALTH INEQUITY AND WHY IT MATTERS; CHAPTER 4: URBAN HEALTH INEQUITIES REVEALED; CHAPTER 5: ACHIEVING THE MILLENNIUM DEVELOPMENT GOALS; CHAPTER 6: URBAN GOVERNANCE FOR REDUCING HEALTH INEQUITIES; CHAPTER 7: BUILDING AN EVIDENCE BASE FOR ACTION; CHAPTER 8: TAKING ACTION; CONCLUSION: THE PRICE AND THE PROMISE OF OUR URBAN WORLD; ANNEXES; REFERENCES 330 $aThe global report ""Hidden Cities: Unmasking and Overcoming Health Inequities in Urban Settings"" is one important component of the overall WHO strategy to strengthen the response of the local, national and global health communities to reduce health inequities in an increasingly urbanized world.The report exposes the extent to which the urban poor suffer disproportionately from a wide range of diseases and health problems, which can be traced back to inequalities in their social and living conditions. It also provides evidence-based information and tools to help municipal and health authoritie 606 $aCity planning$xHealth aspects 606 $aUrban health 606 $aCity planning 606 $aUrbanization 606 $aCity Planning$3(DNLM)D002958 606 $aUrban Health$xtrends$3(DNLM)D014504Q000639 606 $aHealthcare Disparities$3(DNLM)D054625 606 $aHealth Status Disparities$3(DNLM)D054624 606 $aUrbanization$3(DNLM)D014507 606 $aUrban Health$3(DNLM)D014504 615 0$aCity planning$xHealth aspects. 615 0$aUrban health. 615 0$aCity planning. 615 0$aUrbanization. 615 12$aCity Planning. 615 12$aUrban Health$xtrends 615 22$aHealthcare Disparities. 615 22$aHealth Status Disparities. 615 22$aUrbanization. 615 2$aUrban Health. 676 $a362.1042 712 02$aUnited Nations Human Settlements Programme. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910972751703321 996 $aHidden cities$92669357 997 $aUNINA