LEADER 05080oam 2200529 450 001 9910790867603321 005 20190911112729.0 010 $a981-4508-47-0 035 $a(OCoLC)860388605 035 $a(MiFhGG)GVRL8RIO 035 $a(EXLCZ)992550000001160079 100 $a20140312h20142014 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 10$aBack-of-the-envelope quantum mechanics $ewith extensions to many-body systems and integrable PDEs /$fMaxim Olshanii, University of Massachusetts, Boston, USA 210 1$aNew Jersey :$cWorld Scientific,$d[2014] 210 4$d?2014 215 $a1 online resource (xvii, 151 pages) $cillustrations 225 0 $aGale eBooks 300 $aIncludes index. 311 $a981-4508-46-2 311 $a1-306-12033-0 320 $aIncludes bibliographical references and indexes. 327 $aPreface; Contents; 1. Ground State Energy of a Hybrid Harmonic-Quartic Oscillator: A Case Study; 1.1 Solved problems; 1.1.1 Dimensional analysis and why it fails in this case; 1.1.1.1 Side comment: dimensional analysis and approximations; 1.1.1.2 Side comment: how to recast input equations in a dimensionless form; 1.1.2 Dimensional analysis: the harmonic oscillator alone; 1.1.3 Order-of-magnitude estimate: full solution; 1.1.3.1 Order-of-magnitude estimates vis-a-vis dimensional analysis; 1.1.3.2 Harmonic vs. quartic regimes; 1.1.3.3 The harmonic oscillator alone 327 $a1.1.3.4 The quartic oscillator alone1.1.3.5 The boundary between the regimes and the final result; 1.1.4 An afterthought: boundary between regimes from dimensional considerations; 1.1.5 A Gaussian variational solution; 2. Bohr-Sommerfeld Quantization; 2.1 Solved problems; 2.1.1 A semi-classical analysis of the spectrum of a harmonic oscillator: the exact solution, an order-of-magnitude estimate, and dimensional analysis; 2.1.2 WKB treatment of a "straightened" harmonic oscillator; 2.1.3 Ground state energy in power-law potentials; 2.1.4 Spectrum of power-law potentials 327 $a2.1.5 The number of bound states of a diatomic molecule2.1.6 Coulomb problem at zero angular momentum; 2.1.7 Quantization of angular momentum from WKB; 2.1.8 From WKB quantization of 4D angular momentum to quantization of the Coulomb problem; 2.2 Problems without provided solutions; 2.2.1 Size of a neutral meson in Schwinger's toy model of quark confinement; 2.2.2 Bohr-Sommerfeld quantization for periodic boundary conditions; 2.2.3 Ground state energy of multi-dimensional powerlaw potentials; 2.2.4 Ground state energy of a logarithmic potential; 2.2.5 Spectrum of a logarithmic potential 327 $a2.2.6 1D box as a limit of power-law potentials2.2.7 Spin-1/2 in the field of a wire; 2.2.8 Dimensional analysis of the time-dependent Schro-dinger equation for a hybrid harmonicquartic oscillator; 2.3 Background; 2.3.1 Bohr-Sommerfeld quantization; 2.3.2 Multi-dimensional WKB; 2.4 Problems linked to the "Background"; 2.4.1 Bohr-Sommerfeld quantization for one soft turning point and a hard wall; 2.4.2 Bohr-Sommerfeld quantization for two hard walls; 3. "Halved" Harmonic Oscillator: A Case Study; Introduction; 3.1 Solved Problems; 3.1.1 Dimensional analysis; 3.1.2 Order-of-magnitude estimate 327 $a3.1.3 Another order-of-magnitude estimate3.1.4 Straightforward WKB; 3.1.5 Exact solution; 4. Semi-Classical Matrix Elements of Observables and Perturbation Theory; 4.1 Solved problems; 4.1.1 Quantum expectation value of x6 in a harmonic oscillator; 4.1.2 Expectation value of r2 for a circular Coulomb orbit; 4.1.3 WKB approximation for some integrals involving spherical harmonics; 4.1.4 Ground state wave function of a one dimensional box; 4.1.5 Eigenstates of the harmonic oscillator at the origin: how a factor of two can restore a quantum-classical correspondence 327 $a4.1.6 Probability density distribution in a "straightened" harmonic oscillator 330 $aDimensional and order-of-magnitude estimates are practiced by almost everybody but taught almost nowhere. When physics students engage in their first theoretical research project, they soon learn that exactly solvable problems belong only to textbooks, that numerical models are long and resource consuming, and that ""something else"" is needed to quickly gain insight into the system they are going to study. Qualitative methods are this ""something else"", but typically, students have never heard of them before. The aim of this book is to teach the craft of qualitative analysis using a set of p 606 $aQuantum theory 606 $aMany-body problem 606 $aDifferential equations, Partial 615 0$aQuantum theory. 615 0$aMany-body problem. 615 0$aDifferential equations, Partial. 676 $a530.12015118 700 $aOlshanii$b M$g(Maxim)$01547479 801 0$bMiFhGG 801 1$bMiFhGG 906 $aBOOK 912 $a9910790867603321 996 $aBack-of-the-envelope quantum mechanics$93803889 997 $aUNINA LEADER 01661nam 2200433 450 001 9910811019803321 005 20220705134939.0 010 $a1-63840-900-5 035 $a(CKB)4100000011816907 035 $a(MiAaPQ)EBC6526570 035 $a(Au-PeEL)EBL6526570 035 $a(OCoLC)1243742917 035 $a(EXLCZ)994100000011816907 100 $a20220705d2020 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFloppy logic $eexperimenting in the territory between architecture, fashion and textiles /$fLeanne Zilka 210 1$aNew York, New York :$cActar Publishers,$d[2020] 210 4$d©2020 215 $a1 online resource (164 pages) 311 $a1-948765-37-3 320 $aIncludes bibliographical references. 330 $a"Floppy Logic is an exploration into the 'architecture' of fashion and textiles, and how the concepts, aesthetics, techniques and construction of this architecture might be understood and used to design and fabricate objects and space differentially. This book explores these territories through physical and digital testing of ideas that begin at the scale of papers and end at the scale of buildings"--Page 4 of cover. 606 $aArchitecture$xDetails 606 $aBuilding materials 615 0$aArchitecture$xDetails. 615 0$aBuilding materials. 676 $a721.04 700 $aZilka$b Leanne$01601339 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910811019803321 996 $aFloppy logic$93924895 997 $aUNINA LEADER 01338nam 22004455u 450 001 9910149607003321 005 20211006144817.0 010 $a9783318044119 010 $a3318044113 035 $a(CKB)3780000000100529 035 $a(OCoLC)1046110306 035 $a(SZ-BaSKA)220290 035 $a(MiAaPQ)EBC31865973 035 $a(Au-PeEL)EBL31865973 035 $a(EXLCZ)993780000000100529 100 $a20211006d1983 uy 0 101 0 $ager 135 $aurunu||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aChemie im Laboratorium : $eEinführung in die allgemeinen theoretischen Grundlagen mit Einblick in die klinische Chemie und Biochemie / $f K. Lauber 205 $a4., vollständig neu bearbeitete und erweiterte Auflage. 210 $aBasel : $cS. Karger, $d1983 215 $a1 online resource (VIII + 376 pages) : $c 103 figures, 44 tables 311 08$a9783805535472 311 08$a3805535473 606 $aLaboratory 606 $aBiochemistry 606 $aChemistry 615 14$aLaboratory 615 14$aBiochemistry 615 14$aChemistry 700 $aLauber$b K$01216866 801 0$bUKSKG 801 1$bUKSKG 906 $aBOOK 912 $a9910149607003321 996 $aChemie im Laboratorium$92813661 997 $aUNINA