LEADER 00430ojm 2200169z- 450 001 9910148997003321 010 $a2-36762-254-X 035 $a(CKB)3710000000924587 035 $a(EXLCZ)993710000000924587 100 $a20231107c2016uuuu -u- - 101 0 $aeng 200 10$aDans la paix des saisons 210 $cAudiolib 906 $aAUDIO 912 $a9910148997003321 996 $aDans la paix des saisons$93580657 997 $aUNINA LEADER 05463nam 22008535 450 001 9910438152203321 005 20251230064506.0 010 $a9781461464068 010 $a1461464064 024 7 $a10.1007/978-1-4614-6406-8 035 $a(OCoLC)837168105 035 $a(MiFhGG)GVRL6XVY 035 $a(CKB)2550000001043729 035 $a(MiAaPQ)EBC1205313 035 $a(MiFhGG)9781461464068 035 $a(DE-He213)978-1-4614-6406-8 035 $a(EXLCZ)992550000001043729 100 $a20130327d2013 u| 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 10$aAsymptotic Geometric Analysis $eProceedings of the Fall 2010 Fields Institute Thematic Program /$fedited by Monika Ludwig, Vitali D. Milman, Vladimir Pestov, Nicole Tomczak-Jaegermann 205 $a1st ed. 2013. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Springer,$d2013. 215 $a1 online resource (x, 395 pages) $cillustrations (some color) 225 1 $aFields Institute Communications,$x2194-1564 ;$v68 300 $aInternational conference proceedings. 311 08$a9781489993311 311 08$a1489993312 311 08$a9781461464051 311 08$a1461464056 320 $aIncludes bibliographical references. 327 $aPreface -- The Variance Conjecture on Some Polytopes (D. Alonso Gutirrez, J. Bastero) -- More Universal Minimal Flows of Groups of Automorphisms of Uncountable Structures (D. Bartosova) -- On the Lyapounov Exponents of Schrodinger Operators Associated with the Standard Map (J. Bourgain) -- Overgroups of the Automorphism Group of the Rado Graph (P. Cameron, C. Laflamme, M. Pouzet, S. Tarzi, R. Woodrow) -- On a Stability Property of the Generalized Spherical Radon Transform (D. Faifman) -- Banach Representations and Affine Compactification of Dynamical Systems (E. Glasner, M. Megrelishvili) -- Flag Measures for Convex Bodies (D. Hug, I. Turk, W. Weil) -- Operator Functional Equations in Analysis (H. Konig, V. Milmann) -- A Remark on the External Non-Central Sections of the Unit Cube (J. Moody, C. Stone, D. Zach, A. Zvavitch) -- Universal Flows of Closed Subgroups of S? and Relative Extreme Amenability (L. Nguyen Van The) -- Oscillation of Urysohn Type Spaces (N.W. Sauer) -- Euclidean Sections of Convex Bodies (G. Schechtman) -- Duality on Convex Sets in Generalized Regions (A. Segal, B.A. Slomka) -- On Polygons and Injective Mappings of the Plane (B.A. Slomka) -- Abstract Approach to Ramsey Theory and Ramsey Theorems for Finite Trees (S. Solecki) -- Some Affine Invariants Revisited (A. Stancu) -- On the Geometry of Log-Concave Probability Measures with Bounded Log-Sobolev Constant (P. Stavrakakis, P. Valettas) -- f-Divergence for Convex Bodies (E.M. Werner). 330 $aAsymptotic Geometric Analysis is concerned with the geometric and linear properties of finite dimensional objects, normed spaces, and convex bodies, especially with the asymptotics of their various quantitative parameters as the dimension tends to infinity. The deep geometric, probabilistic, and combinatorial methods developed here are used outside the field in many areas of mathematics and mathematical sciences. The Fields Institute Thematic Program in the Fall of 2010 continued an established tradition of previous large-scale programs devoted to the same general research direction. The main directions of the program included: * Asymptotic theory of convexity and normed spaces * Concentration of measure and isoperimetric inequalities, optimal transportation approach * Applications of the concept of concentration * Connections with transformation groups and Ramsey theory * Geometrization of probability * Random matrices * Connection with asymptotic combinatorics and complexity theory These directions are represented in this volume and reflect the present state of this important area of research. It will be of benefit to researchers working in a wide range of mathematical sciences?in particular functional analysis, combinatorics, convex geometry, dynamical systems, operator algebras, and computer science. 410 0$aFields Institute Communications,$x2194-1564 ;$v68 606 $aFunctional analysis 606 $aProbabilities 606 $aFunctions of real variables 606 $aOperator theory 606 $aConvex geometry 606 $aDiscrete geometry 606 $aTopological groups 606 $aLie groups 606 $aFunctional Analysis 606 $aProbability Theory 606 $aReal Functions 606 $aOperator Theory 606 $aConvex and Discrete Geometry 606 $aTopological Groups and Lie Groups 615 0$aFunctional analysis. 615 0$aProbabilities. 615 0$aFunctions of real variables. 615 0$aOperator theory. 615 0$aConvex geometry. 615 0$aDiscrete geometry. 615 0$aTopological groups. 615 0$aLie groups. 615 14$aFunctional Analysis. 615 24$aProbability Theory. 615 24$aReal Functions. 615 24$aOperator Theory. 615 24$aConvex and Discrete Geometry. 615 24$aTopological Groups and Lie Groups. 676 $a515.6 701 $aLudwig$b Monika$01460403 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910438152203321 996 $aAsymptotic geometric analysis$94192616 997 $aUNINA